

S6 Mock Examination (2021 – 2022) Mathematics Compulsory Part PAPER 2 (1 hour 15 minutes)

Date: 14th January 2022 Time: 11:15 a.m. – 12:30 p.m.

Name:	
Class:	No.:

• •

INSTRUCTIONS

MATH CP PAPER 2

- 1. Read carefully the instructions on the Answer Sheet and insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words **'END OF PAPER'** after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1. $\frac{(3^{2n})(16^{n})}{2^{2n}} =$ A. 6^{-n} .
B. 6^{n} .
C. 6^{2n} .
D. 6^{3n} .

2. If
$$p(2 - x) - x = -x(p + x)$$
, then $p =$
A. $\frac{x - x^2}{2}$.
B. $\frac{3x}{2 + x}$.
C. $\frac{x + x^2}{2}$.
D. $\frac{x}{1 - x}$.

$$3. \quad 4 - 4u^2 - 12uv - 9v^2 =$$

- A. (2 + 2u + 3v)(2 2u 3v).
- B. (2+2u-3v)(2-2u+3v).
- C. (4 + 4u + 3v)(1 u 3v).
- D. (4 + 4u 3v)(1 u + 3v).

4.
$$\frac{1}{a+3b} - \frac{4}{3a-b} =$$

A. $\frac{a+11b}{(a+3b)(b-3a)}$.
B. $\frac{a+13b}{(a+3b)(b-3a)}$.
C. $\frac{a-11b}{(a+3b)(b-3a)}$.
D. $\frac{a-13b}{(a+3b)(b-3a)}$.

5. The greatest integer satisfying the compound inequality $3 - 2(x - 5) \ge 19$ or $\frac{4x + 1}{3} < 6$ is

- A. -3.
- B. -2.
- C. 3.
- D. 4.

6. If A, B and C are non-zero constants such that $A(x + 4) + B(2x + 1) \equiv C(x + 3)$, then A : B =

- A. 1:5.
- B. 1:7.
- C. 5:1.
- D. 7:1.
- 7. Let $f(x) = 2x^2 x 3$. If α is a constant, then $f(1+\alpha) f(1-\alpha) = 1$
 - A. 2α .
 - B. 6α .
 - C. $4\alpha^2 4$.
 - D. $4\alpha^2 2\alpha 3$.

8. Let f(x) be a polynomial divisible by x + 2. When f(x) is divided by x - 2, the remainder is 4.

Find the remainder when f(x) is divided by $x^2 - 4$.

- A. -x-2B. -x+2C. x-2D. x+2
- 9. In a marathon race, 40% of the runners are above 25 years old. If 70% of the female runners and 30% of the male runners are above 25 years old, find the percentage of male runners in the race.
 - A. 25%
 - B. 50%
 - C. 60%
 - D. 75%
- 10. The volume of a carton of milk is measured as 1.8 L correct to the nearest 0.1 L. If the carton of milk is poured into *n* bottles such that the volume of each bottle of milk is measured as 80 mL correct to the nearest 10 mL, find the greatest possible value of *n*.
 - A. 22
 - B. 23
 - C. 24
 - D. 25
- 11. If x : y = 2 : 3 and y : z = 1 : 4, then (x + y):(y + z) =
 - A. 1:3.
 - B. 2:1.
 - C. 1:1.
 - D. 3:4.

- 12. It is given that w varies directly as x and inversely as the square root of y. If x is decreased by 16% and y is increased by 44%, then w
 - A. is increased by 23%.
 - Β. is decreased by 30%.
 - С. is decreased by 40%.
 - D. is decreased by 70%.
- 13. Let x_n be the *n*th term of a sequence. If $x_2 = 4$, $x_5 = 34$ and $x_{n+2} = x_{n+1} + x_n$ for any positive integer *n*, then $x_6 =$
 - А. 38.
 - В. 44.
 - C. 53.
 - D. 64.

14. Let *h* and *k* be constants. If h > 0 and k < 0, which of the following can be the graph of $y = h(k - x)^2 - 1$? В. A.

C.

- 15. The base of a solid right prism is an equilateral triangle. All the lateral faces of the prism are squares. If the volume of the prism is 486 cm^3 , find the total surface area of the prism correct to the nearest cm².
 - A. 263 cm^2
 - B. 322 cm^2
 - C. 371 cm^2
 - D. 418 cm^2
- 16. A container is full of water. 3 spherical metal balls are put into the container. When the metal balls are completely immersed into water, 252 cm^3 of water overflows. It is known that the ratio of the surface areas of the 3 metal balls are 1:4:9. Find the volume of the largest metal ball.
 - A. 189 cm^3
 - B. 210 cm^3
 - C. 126 cm^3
 - D. 162 cm^3
- 17. The angle of a sector is decreased by 75% but its radius is increased by 300%. Denote the arc lengths of the original sector and the new sector by a_1 and a_2 respectively. Which of the following is true?
 - A. $a_1 < a_2$
 - B. $a_1 = a_2$
 - C. $a_1 > a_2$
 - D. Cannot be determined
- 18. In the figure, *ABCD* is a trapezium. *E* is a point lying on *DC* such that *ABED* is a parallelogram and
 - AB: EC = 2: 1. BE and AC intersect at F. The ratio of the area of $\triangle FEC$ to the area of $\triangle ADE$ is

19. In the figure, *ABCDEF* is a regular hexagon. *AD* intersects *CE* and *CF* at *P* and *Q* respectively, while *AE* intersects *CF* at *R*. Which of the following are true?

20. In the figure, *ABCD* is a square. *CD* is produced to *G* such that $\angle DAG = 36^\circ$. *E* is a point lying on *BC* such that BE = DG. If *F* is a point lying on *CD* such that $\angle DAF = 9^\circ$, then $\angle CEF =$

- 21. If ABCDE is a regular pentagon, which of the following are true?
 - I. AC // ED
 - II. BD = CE
 - III. $2\angle BAD = 3\angle BCD$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

22. In the figure, ABCDE is a semi-circle where AB:BC:CD:DE = 4:1:2:3. Find $\angle CAD$.

- 23. A point *P* is translated upwards by 2 units to the point *Q*. Then, *Q* is rotated clockwise about the origin through 90° to the point *R*. If the coordinates of *R* are $(3, \sqrt{3})$, then the polar coordinates of *P* are
 - A. (2,150°).
 - B. $(2\sqrt{3}, 150^\circ).$
 - C. (2, 330°).
 - D. $(2\sqrt{3}, 330^{\circ}).$

- 25. The coordinates of the points A and B are (4, 7) and (5, -2) respectively, and O is the origin. If P is a moving point in the rectangular coordinate plane such that the perpendicular distance from P to the straight line OA is equal to the perpendicular distance from P to the straight line OB, then the locus of P is
 - A. the perpendicular bisector of *AB*.
 - B. the angle bisector of $\angle AOB$.
 - C. the straight line which passes through *A* and *B*.
 - D. the circle with *AB* as a diameter.
- 26. The coordinates of the points *A* and *B* are (3, 7) and (20, 8) respectively. Let *P* be a point such that *AP* is an altitude of $\triangle OAB$, where *O* is the origin. Find the equation of the straight line which passes through *A* and *P*.
 - A. 2x 5y 41 = 0
 - B. 2x 5y + 29 = 0
 - C. 5x + 2y 1 = 0
 - D. 5x + 2y 29 = 0
- 27. The equations of the straight line *L* and the circle *C* are kx 5y + k = 0 and $2x^2 + 2y^2 - 8x - 12y + 15 = 0$ respectively, where *k* is a constant. If *L* divides *C* into two equal parts, find the *y*-intercept of *L*.
 - A. -1B. 1 C. $\frac{6}{5}$ D. 5

- 28. A bag contains five cards A, B, C, D and E. Two cards are drawn at random from the bag one by one without replacement. Find the probability that card C is not drawn.
 - A. $\frac{1}{5}$ B. $\frac{2}{5}$ C. $\frac{3}{5}$ D. $\frac{4}{5}$
- 29. The box-and-whisker diagram below shows the distribution of the time (in minutes) spent on revision by students in Class 6A on a certain day.

Which of the following must be true?

- I. The range of the distribution is 44 minutes.
- II. At least half of the students in Class 6A spend more than 55 minutes on revision on that day.
- III. If a student is randomly chosen from Class 6A, the probability that he/she spends 68 minutes or above on revision on that day is 0.25.
 - A. I only
 - B. III only
 - C. I and II only
 - D. II and III only
- 30. Consider the following integers:

22	35	26	42	37	22	р	q	r
						-	-	

If the mean and the mode of the above integers are 30 and 37 respectively, then the median of the above integers is

- A. 12.
- B. 22.
- C. 35.
- D. 37.

- 31. $1100000101_{16} =$
 - A. $2^{10} + 2^9 + 5$.
 - B. $2^{11} + 2^{10} + 10$.
 - C. $2^{40} + 2^{36} + 257$.
 - D. $2^{44} + 2^{40} + 4$ 112.
- 32. Let *a*, *b* and *c* be positive constants. If $\log_a 2 = \log_b 5 = \frac{1}{c}$, then $\log_{ab} 10 =$
 - A. $\frac{1}{c^2}$. B. $\frac{1}{c}$. C. c^2 . D. c.
- 33. The graph in the figure shows the linear relation between x^3 and $\log_2 y$. If x = -2, then y =

- 34. Let *a* and *b* be real numbers. Define u = a + bi and v = a bi. If $a^2 + b^2 = 1$, which of the following must be true?
 - I. *uv* is a real number.

II.
$$v = \frac{1}{u}$$
.

III. *u* and *v* are the roots of the equation $x^2 - 2ax + 1 = 0$.

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 35. Consider the following system of inequalities:

$$\begin{cases} 3x + 4y - 32 \le 0\\ 2x + 5y - 26 \le 0\\ x \ge 0\\ y \ge 0 \end{cases}$$

Let *R* be the region which represents the solution of the above system of inequalities. Find the constant *k* such that the greatest value of 7x+12y+k is 55, where (x, y) is a point lying in *R*.

- A. –25
- B. –4
- C. 15
- D. 27
- 36. If x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 and x_8 form an arithmetic sequence of positive numbers, which of the following must be true?
 - I. $x_1 + x_3 + x_7 = x_2 + x_4 + x_5$
 - II. $x_5 x_3 < x_8 x_2$
 - III. $x_4x_6 = x_3x_7$
 - A. I only
 - B. III only
 - $C. \quad I \ and \ II \ only$
 - D. II and III only

37. Let *c* be a constant. Find the range of values of *c* such that $-x^2 - 2cx + c - 20 \le 0$ for any real number *x*.

- A. $-5 \le c \le 4$
- B. $-4 \le c \le 5$
- C. $c \leq -5 \text{ or } c \geq 4$
- D. $c \leq -4 \text{ or } c \geq 5$
- 38. The figure shows a circle with radius 6 cm. *O* is the centre. Let *A*, *B*, *C* and *D* be points on the circle such that *AOC* is a straight line, $\angle AOD = 45^{\circ}$ and $\angle AOB = 120^{\circ}$. Denote the point of intersection of *BO* produced and *CD* by *E*. Find *OE* correct to the nearest 0.1 cm.
 - A. 3.4 cm
 - B. 3.6 cm
 - C. 3.8 cm
 - D. 4.0 cm

- 39. In the figure, *ABCD* is a circle. *DB* is a diameter of the circle. *FAG* is the tangent to the circle at *A*. *AC* meets *DB* at *E*. *DB* produced meets *FG* at *F*. $\angle BAF = 25^{\circ}$. Find $\angle BFA$.
 - A. 25°
 - B. 30°
 - C. 35°
 - D. 40°

40. If the straight line x + y = 0 and the circle $x^2 + y^2 - 2kx - 8y + k = 0$ intersect at two distinct points, find the range of values of k.

A. -8 < k < -2B. k < -8 or k > -2C. k < 2 or k > 8D. 2 < k < 8

- 41. The equations of the three sides of a triangle are 12x + 5y = 60, 12x 5y = 60 and x = c, where c is a constant. If the x-coordinate of the in-centre of the triangle is 18, then c =
 - A. 18.
 - B. 30.
 - C. 31.
 - D. 36.
- 42. A queue is formed by 6 adults and 3 children. If there is no child at either end of the queue and none of the children stands next to one another, how many different queues can be formed?
 - A. 43 200
 - B. 86 400
 - C. 151 200
 - D. 332 640

- 43. In a bag, there are 5 red balls and 1 green ball. Clement and Diana take turns to draw a ball at random from the bag without replacement until a green ball is drawn. The person who gets the green ball is the winner. If Clement draws first, find the probability that Clement will win at his second draw.
 - A. $\frac{1}{3}$ B. $\frac{1}{4}$ C. $\frac{1}{5}$ D. $\frac{1}{6}$
- 44. In a test, the test score of Lily is 45 marks and her standard score is -1.5. The test score of Henry is 70 marks and his standard score is 1. Find the standard deviation of the test scores.
 - A. 5 marks
 - B. 10 marks
 - C. 15 marks
 - D. 60 marks
- 45. It is given that T(n) is the *n*th term of an arithmetic sequence. Which of the following must be true?
 - I. The mean of $\{T(2), T(3), T(4), ..., T(99)\}$ = The mean of $\{T(1), T(2), T(3), ..., T(100)\}$
 - II. The variance of $\{T(4), T(8), T(12), ..., T(100)\} = \frac{1}{5} \times$ The variance of $\{T(20), T(40), T(60), ..., T(500)\}$

III. The range of $\{T(1), T(3), T(5), ..., T(2021)\}$ = The range of $\{T(2), T(4), T(6), ..., T(2022)\}$

- A. I and II only
- B. II and III only
- C. I and III only
- D. I, II and III

END OF PAPER