FUKIEN SECONDARY SCHOOL

S6 First Term Uniform Test (2021-2022)

Chemistry

(1 hour)

Date: 8th November 2021 Time: 10:15a.m. - 11:15a.m.

Name:	
Class:	No.:

Instructions to Students:

- 1. Write your name, class and class number on both the question paper and the answer sheets.
- 2. Answer ALL questions.
- 3. Write down all the answers on the answer sheets.
- 4. Hand in the question paper and the answer sheets at the end of the examination.
- 5. The total mark of the paper is 50.

I Multiple Choice Questions (20 marks)

- 1. A substance is soluble in water and does not conduct electricity in solid state. The substance could be
 - (1) an element with giant covalent structure.
 - (2) a compound with simple molecular structure.
 - (3) a compound with giant ionic structure.
 - A. (1) only
 - B. (2) only
 - C. (1) and (3) only
 - D. (2) and (3) only
- 2. Ammonia gas CANNOT turn dry red litmus paper blue because
 - A. it is an acid.
 - B. it is neutral.
 - C. it contains no OH⁻ ion.
 - D. it contains no H^+ ion.

- 3. Which of the following statements about butane and pentane is INCORRECT?
 - A. They have similar chemical properties.
 - B. They have the same physical state at room conditions.
 - C. Pentane has a higher melting point than butane.
 - D. Pentane has a larger relative molecular mass than butane.
- 4. In 1993, the largest discrete hydrocarbon molecule $C_{1134}H_{1146}$ was synthesized in the laboratory by scientists. Which of the following predictions about this hydrocarbon must be INCORRECT?
 - A. It is a solid at room temperature and pressure.
 - B. It contains carbon-carbon double bonds.
 - C. It burns in air incompletely to give carbon monoxide and water.
 - D. It is as hard as diamond.
- 5. Which of the following methods can be used to distinguish between ethane and ethene?
 - (1) Bubbling the gases into bromine (dissolved in an organic solvent) in the dark
 - (2) Bubbling the gases into universal indicator
 - (3) Bubbling the gases into acidified potassium permanganate solution
 - A. (1) and (2) only
 - B. (1) and (3) only
 - C. (2) and (3) only
 - D. (1), (2) and (3)
- 6. Which of the following jets of liquid would be deflected towards a charged rod?
 - (1) Hexane
 - (2) Ethanol
 - (3) Hydrochloric acid
 - A. (1) and (2) only
 - B. (1) and (3) only
 - C. (2) and (3) only
 - D. (1), (2) and (3)
- 7. Which of the following molecules are NOT held by hydrogen bonds?
 - A. Ammonia
 - B. Fluoromethane
 - C. Propan-2-ol
 - D. Sulphuric acid

8. Consider the following chemical cell:

Which of the following statements about the chemical cell is correct?

- A. Colourless gas bubbles evolve on metal *P*.
- B. The voltage will be smaller if copper is replaced by iron.
- C. Chlorine evolves on metal *P* if metal *P* is replaced by a graphite electrode.
- D. This chemical cell can be used to electroplate metal *P* with copper.

9. Which of the following statements about Hess's Law are correct?

- (1) It states that the overall enthalpy change of a reaction is the same, regardless of the route by which the reaction takes place.
- (2) It states that the overall enthalpy change of a reaction depends on the difference in enthalpy between the reactants and products.
- (3) It is applied to determine the enthalpy change of reactions that cannot be found by experiments directly.
- A. (1) and (2) only
- B. (1) and (3) only
- C. (2) and (3) only
- D. (1), (2) and (3)
- 10. 20 cm³ of ethane is burned with 95 cm³ of oxygen to give carbon dioxide and water. What is the volume of oxygen unreacted?

(Assume that the volumes of gases are all measured at room temperature and pressure.)

- A. 20 cm^3
- B. 25 cm^3
- C. 55 cm^3
- D. 70 cm^3

11. Consider the following reaction:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

In an experiment, 0.05 mol of $SO_2(g)$ and 0.03 mol of $O_2(g)$ were introduced into a 1 dm³ container and allowed to reach equilibrium. At equilibrium, the concentration of $SO_3(g)$ was 0.04 mol dm⁻³. What is the equilibrium constant of the reaction?

- A. $21.3 \text{ mol}^{-1} \text{ dm}^3$
- B. $26.7 \text{ mol}^{-1} \text{ dm}^3$
- C. $400 \text{ mol}^{-1} \text{ dm}^3$
- D. $1600 \text{ mol}^{-1} \text{ dm}^3$
- 12. Which of the following methods can be used to distinguish a pair of enantiomers?
 - (1) Measuring their optical activities by using a polarimeter
 - (2) Comparing the boiling points of enantiomers
 - (3) Comparing the densities of enantiomers
 - A. (1) only
 - B. (2) only
 - C. (1) and (3) only
 - D. (2) and (3) only

13. *X* is a Period 3 element in the Periodic Table. The structure of *X* is shown below:

What is *X*?

- A. Carbon
- B. Silicon
- C. Phosphorus
- D. Sulphur

14. Which of the following is the correct order for the melting points of elements?

- A. C > Ar > Be > Mg
- B. C > Be > Mg > Ar
- C. Mg > Be > C > Ar
- D. Be > C > Ar > Mg

- 15. Solid *X* can react with dilute sulphuric acid but will NOT give water as one of the products. What is *X*?
 - A. Zinc hydroxide
 - B. Magnesium oxide
 - C. Potassium carbonate
 - D. Calcium chloride
- 16. A mixture of solution X and solution Y is a clear colourless solution. When the mixture is heated with excess NaOH(aq), a pungent gas evolves and a white precipitate forms. Which of the following combinations of X and Y is correct?

	Solution X	Solution Y
A.	$(NH_4)_2SO_4(aq)$	CaCl ₂ (aq)
B.	$(NH_4)_2SO_4(aq)$	KCl(aq)
C.	NH ₄ Cl(aq)	MgSO ₄ (aq)
D.	NH ₄ Cl(aq)	$Pb(NO_3)_2(aq)$

17. The following set-up is used to study the rate of the reaction:

The muslin bag is immersed completely into the acid. The initial rate of the reaction is determined by measuring the change in mass of the set-up. The experiment is then repeated with one of the conditions changed. In which of the following situations would the initial rates of the two reactions be the same?

- A. Using powdered $CaCO_3(s)$ of the same mass
- B. Using 5 cm^3 of $2 \text{ mol dm}^{-3} \text{HCl}(aq)$
- C. Using 20 cm^3 of 1 mol dm⁻³ HCl(aq)
- D. Using 10 cm^3 of 1 mol dm⁻³ HCl(aq) which is preheated to 45° C

- 18. When 1 g of magnesium ribbon is added to 50 cm³ of 0.1 M hydrochloric acid, 47 cm³ of hydrogen is collected in a gas syringe. What is the percentage yield of the reaction? (Relative atomic mass of Mg = 24.3; molar volume of gas at room temperature and pressure = $24.0 \text{ dm}^3 \text{ mol}^{-1}$)
 - A. 39.2%
 - B. 67.7%
 - C. 78.3%
 - D. 89.4%
- 19. Grease and oil in ovens are readily removed by concentrated sodium hydroxide solution. Which of the following statements about the reaction involved are correct?
 - (1) The grease and oil are hydrolysed by concentrated sodium hydroxide solution.
 - (2) A lot of heat is evolved when concentrated sodium hydroxide dissolves in water.
 - (3) Concentrated sodium hydroxide solution reacts with grease and oil to give products which are soluble in water.
 - A. (1) and (2) only
 - B. (1) and (3) only
 - C. (2) and (3) only
 - D. (1), (2) and (3)
- 20. The following diagram shows the structure of compound *X*:

Which of the following statements about compound *X* is INCORRECT?

- A. The molecular formula is $C_7H_{11}NO_2$.
- B. It can decolorize acidified potassium permanganate solution.
- C. It can be reduced by sodium borohydride in water.
- D. It can be a monomer of a condensation polymer.

II Structured Questions (30 marks)

1. In an experiment, 11.3 cm³ of methanoic acid, 36.4 cm³ of ethanol and a small quantity of catalyst were mixed together.

$HCOOH(l) + CH_3CH_2OH(l) \rightleftharpoons HCOOCH_2CH_3(l) + H_2O(l)$

After several hours, equilibrium was reached. 5.0 cm^3 of the reaction mixture required 25.0 cm³ of 0.25 M NaOH(aq) for neutralization.

(Given that the densities of ethanol and methanoic acid are 0.789 g cm⁻³ and 1.22 g cm⁻³ respectively; molar masses of ethanol and methanoic acid are both 46.0 g mol⁻¹.)

- (a) Write the expression for the equilibrium constant for the reaction. (1 mark)
- (b) Calculate the number of moles of methanoic acid and ethanol before the reaction. (2 marks)
- (c) Calculate the number of moles of methanoic acid in 5.0 cm^3 of the equilibrium mixture. (2 marks)
- (d) Calculate the equilibrium constant for the reaction. (3 marks)
- 2. This question is about magnesium oxide (MgO) and phosphorus pentoxide (P_4O_{10}).
- (a) Draw the electron diagram of magnesium oxide, showing electrons in the outermost shells only. (1 mark)
- (b) Explain whether magnesium oxide can be used to neutralize acidic soil. (1 mark)
- (c) Phosphorus pentoxide can be prepared by heating white phosphorus (P_4) in plentiful supply of O_2 . Write the chemical equation for the reaction involved. (1 mark)
- (d) Compare the boiling points of MgO and P_4O_{10} . Explain your answer. (2 marks)

3. An experiment was performed to study the following reaction at a certain temperature. $2ClO_2(aq) + 2OH^-(aq) \rightarrow ClO_2^-(aq) + ClO_3^-(aq) + H_2O(l)$

The table below lists the results of the experiment.

Exposimont	Initial concentra	ation (mol dm ⁻³)	Initial rate
Experiment	[ClO ₂ (aq)]	[OH ⁻ (aq)]	$(mol dm^{-3} s^{-1})$
1	0.2	0.6	0.012
2	0.2	1.5	0.030
3	1.1	0.6	0.364

- (a) Deduce the rate equation for the reaction. (3 marks)
- (b) Calculate the rate constant of the reaction at that temperature. (1 mark)
- (c) Sketch the rate-concentration graph for OH⁻(aq), while keeping the concentration of ClO₂(aq) constant.
 (2 marks)
- 4. The diagram below shows the Maxwell-Boltzmann distribution curve of a system at a temperature (T).

- (a) What is the *y*-axis of the curve?
- (b) State the meanings of
 - (i) the area under the curve, (1 mark)
 - (ii) the kinetic energy corresponding to the maximum point on the curve, and
 - (1 mark)
 - (iii) the shaded area under the curve. (1 mark)
- (c) (i) Sketch another curve at T_1 , where $T_1 > T$, on the answer sheet. (1 mark)
 - (ii) Compare ONE difference between the two curves at T and T_1 . (1 mark)

(1 mark)

- 5. Nitrogen fixation is a chemical process which makes the nitrogen in the atmosphere available for forming a wide variety of compounds. Before the invention of Haber process, nitrogen fixation was done by cyanamide process. It is an exothermic reaction in which calcium carbide (CaC₂) reacts with nitrogen at about 1000°C to produce calcium cyanamide (CaCN₂) and carbon.
- (a) (i) Write a chemical equation for the cyanamide process. (1 mark)
 - (ii) Explain whether the cyanamide process is a redox reaction. (1 mark)
- (b) If cyanamide process is a single-step reaction, sketch the energy profile of the cyanamide process. (2 marks)
- (c) Explain why this process was no longer widely used after Haber process had been invented. (1 mark)

End of Paper

GROUP	族				ato	mic numb	er 原子	124-									<
				H H	\												0 He
Ι	Π			1.0								III	IV	Λ	Ν	ΝI	4.0
3	4											5	9	7	8	9	10
E	Be				/							B	C	Z	0	Γ.	Ne
6.9	9.0				/							10.8	12.0	14.0	16.0	19.0	20.2
11	12				, rel	lative aton	nic mass	相對原子	「質量			13	14	15	16	17	18
Na	Mg											Ν	Si	Ρ	S	CI	Ar
23.0	24.3											27.0	28.1	31.0	32.1	35.5	40.0
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ï	Λ	Cr	Mn	Fe	Co	ïZ	Сп	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Νb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	\mathbf{Sb}	Te	Ι	Xe
85.5	87.6	88.9	91.2	92.9	95.9	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57 *	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
C	Ba	La	Ηf	Ta	M	Re	0s	Ir	Pt	Au	Hg	II	Pb	Bi	P_0	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89 **	104	105													
Fr	Ra	Ac	Rf	Db													
(223)	(226)	(227)	(261)	(262)													
	*	58	59	60	61	62	63	64	65	99	67	68	69	70	71		
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Ъ	Dv	Ho	Er	Tm	Yb	Lu		
		140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0		
	* *	90	91	92	93	94	95	96	97	98	66	100	101	102	103		
		Th	Pa	D	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
		232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)		

PERIODIC TABLE 周期表

S6 Chemistry