FUKIEN SECONDARY SCHOOL S4 First Term Uniform Test (2021-2022) Mathematics Compulsory Part (1 hour 15 minutes)

Date: 9th November, 2021 Time: 8:30 a.m. - 9:45 a.m.

Name:_	
Class: _	No.:

Instructions to students:

- This paper consists of TWO parts, Conventional Questions, Multiple-choice Questions and Bonus Question. There are Section A and Section B in Conventional Questions. Section A carries 49 marks, Section B carries 17 marks, Multiple-choice Questions carry 12 marks and Bonus Question carries 5 marks.
- 2. The maximum score of this paper is 78.
- Attempt ALL questions in Conventional Questions and Multiple-choice Questions.
 Write your answers in the spaces provided in this Question / Answer Book.
- 4. Unless otherwise specified, show your workings clearly.
- 5. Unless otherwise specified, numerical answers should either be exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Conventional Questions

Section A (49 marks)

1.	Simplify – ($\frac{ab^7}{a^3b^{-4})^{-2}}$	and express yo	our answer wit	h positive in	dices.	(3 marks)

S4	Mathematics Compulsory Part	Page 2 of 11 pages
2.	Let <i>x</i> , <i>y</i> and <i>z</i> be non-zero numbers such that $x : y = 3 : 4$ and $y = 5z$. Find $\frac{2x + 3y}{2y - z}$.	(3 marks)
3.	Convert 1.36 into a fraction.	(3 marks)
4.	It is given that the quadratic equation $7x^2 + 6x + a = 2$ has real root(s). If <i>a</i> is a positi	ve integer,
	how many possible values of a are there? Explain your answer.	(3 marks)

(10 1 .)
$(10 \dots 1)$
(10 marks)
(4 marks)

(5 marks)

- 7. Let $z = \frac{k+3i}{2-i}$, where *k* is a real number.
 - (a) Express z in the form a + bi.
 - (b) If the real part and the imaginary part of z are equal, find the value of k.

8.	It is given that α and β are two distinct real roots of $x^2 + 5x + 2 = 0$, where $\alpha > \beta$.	
0.		
	(a) Find $\alpha\beta$ and $\alpha^2 + \beta^2$.	
	(b) Form a quadratic equation in x with roots α^2 and β^2 .	
	(0) Form a quantum equation in \mathcal{N} with roots of and \mathcal{P} .	
	(b) Form a quantum equation in x which roots of and p .	(6 marks)
		(6 marks)

- 9. Let $f(x) = x^3 + a^2x^2 + b^2x 1$, where *a* and *b* are positive integers. It is given that f(-1) = 1.
 - (a) By considering (a + b)(a b), or otherwise, write down the values of a and b.
 - (b) Let h(x) = f(x) g(x), where $g(x) = x^3 + x^2 5x 3$. Solve h(x) = 0. (Leave the radical sign ' $\sqrt{}$ ' in the answers.)

(6 marks)

10. In Figure 1, the graph of $y = ax^2 + bx + c$ (where a > 0, $b \ne 0$ and $c \ne 0$) intersects the *x*-axis at Q(c, 0) only. The graph intersects the *y*-axis at *P*. Find the value of *b*.

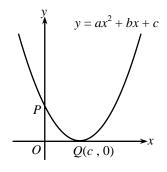


Figure 1

(6	marks)
(0	mains

Section B (17 marks)

In this section, answer EITHER part (X) OR part (Y) in each question. Do not answer both parts. If both parts in a question are attempted, only part (X) will be marked.

- 11. (X) Consider the graph of $y = 2x^2 (2k + 6)x + 3k$.
 - (a) Show that the graph cuts the *x*-axis at two distinct points.
 - (b) Suppose the graph cuts the *x*-axis at *P* and *Q*. If the mid-point of *PQ* lies on a straight line *L*: kx y 4k + 3 = 0, find all the possible coordinates of the mid-point of *PQ*.

(8 marks)

- (Y) Consider the graph of $y = 2x^2 (2k+6)x + 3k$.
 - (a) Show that the graph cuts the *x*-axis at two distinct points.
 - (b) Suppose the graph cuts the *x*-axis at *P* and *Q*. Find the coordinates of the mid-point of *PQ* in terms of *k*.

(4 marks)

- Page 8 of 11 pages
- 12. (X) In a square paper card of side x cm, 4 identical squares of side 2 cm are cut from the corners. The remaining part is then folded to form a box without lid. Let V(x) (in cm³) be the capacity of the box.
 - (a) Express V(x) in terms of x. (3 marks)
 - (b) Find the domain of V(x). (2 marks)
 - (c) Steven claims that for each given capacity of the box, there is only one corresponding value of *x*.Do you agree? Explain your answer. (4 marks)
 - (Y) In a square paper card of side *x* cm, 4 identical squares of side 2 cm are cut from the corners. The remaining part is then folded to form a box without lid. Let V(x) (in cm³) be the capacity of the box.
 - (a) Express V(x) in terms of x. (3 marks)
 - (b) If the capacity of the box is 18 cm^3 , find the value of x. (2 marks)

Multiple-choice Questions (12 marks)

Write down the best answer to each question in the box.

1	2	3	4	5	6

- 1. Figure 2 shows the graph of $y = -x^2 + 3x m + 1$. Find the range of values of *m*.
 - A. *m* < 1
 - B. *m* > 1
 - C. $m < \frac{13}{4}$

 - D. $m > \frac{13}{4}$

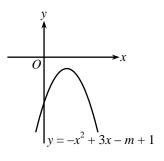
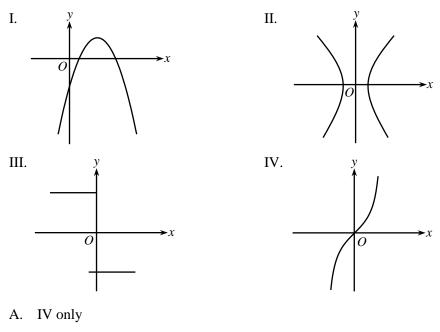


Figure 2

2. Which of the following can represent that y is a function of x?



- I and II only B.
- I and IV only С.
- D. I, III and IV only

Which of the following is the domain of the function $f(x) = \frac{x}{2x-1}$? 3.

- A. all real numbers
- all real numbers except $\frac{1}{2}$ Β.
- C. all real numbers except 1
- D. all real numbers greater than $-\frac{1}{2}$

- 4. If k > 2, find the number of real roots of the equation $x^2 4x + 2k = 0$.
 - A. 0
 - **B**. 1
 - C. 2
 - D. 3
- 5. α and β are the roots of the equation $x^2 kx + 2k 1 = 0$. If $\alpha^3 + \beta^3 = k^3 3$, then k =
 - A. $-\frac{1}{2}$. B. 1. C. $-\frac{1}{2}$ or 1. D. $\frac{1}{2}$ or -1.

6. If
$$\alpha \neq \beta$$
 and $\begin{cases} \alpha^2 - 7\alpha - 3 = 0 \\ \beta^2 - 7\beta - 3 = 0 \end{cases}$, then $\frac{1}{\beta} + \frac{1}{\alpha} =$
A. $-\frac{7}{3}$.
B. $-\frac{3}{7}$.
C. $\frac{3}{7}$.
D. $\frac{7}{3}$.

1. Let
$$x = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$
.
(a) Simplify the following expressions.

- (i) $1 x + x^2$ (ii) x^3
- (b) Let *k* be a real number and $h = k x + x^2 + x^3 x^4 + x^5 + x^6 x^7 + x^8$.
 - (i) Show that h is a real number.
 - (ii) If h does not exceed 4, find the largest value of k.

(5 marks)

END OF PAPER