## FUKIEN SECONDARY SCHOOL S5 Final Examination (2020-2021) Mathematics Compulsory Part Paper 2 (1 hour 15 minutes)

Date: 11<sup>th</sup> June 2021 Time: 11:15 a.m. – 12:30 p.m.

| Name:  |      |
|--------|------|
| Class: | No.: |

## Instructions to students:

- 1. Read carefully the instructions on the Answer Sheet and insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words **'END OF PAPER'** after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

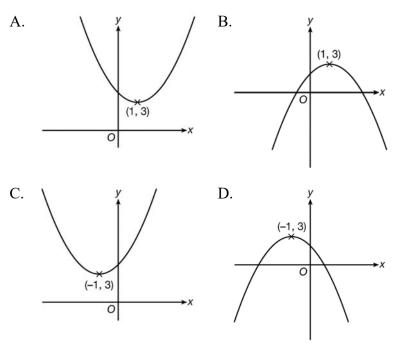
## Section A

1. 
$$4-4x^2-4xy-y^2 =$$
  
A.  $(2-2x-y)(2+2x+y)$ .  
B.  $(2-2x-y)(2+2x-y)$ .  
C.  $(2-2x+y)(2+2x+y)$ .  
D.  $(2-2x+y)(2+2x-y)$ .

2. 
$$\frac{3^{3a-1}}{27^{a-1}} =$$
  
A. 1.  
B. 9.  
C.  $\frac{1}{3^{2a}}$ .  
D.  $\frac{1}{9^{2a}}$ .

$$3. \quad \frac{1}{\sqrt{7}} =$$

- A. 0.380 (correct to 3 decimal places).
- B. 0.3779 (correct to 4 decimal places).
- C. 0.37796 (correct to 5 significant figures).
- D. 0.377965 (correct to 6 significant figures).


4. If 
$$f(x-2) = x^2 - 2x$$
, then  $f(1) =$ 

- A. -1.
- B. 0.
- C. 1.
- D. 3.

S5 Mathematics Compulsory Part

- 5. If *h* and *k* are constants such that  $2x^2 + hx 12 \equiv (kx 3)(4 x)$ , then
  - A. h = -2.
  - B. h = 2.
  - C. h = -5.
  - D. h = 5.
- 6. If  $f(x) = x^{2021} + 2021x + k$  is divisible by x + 1, where k is a constant, then k =
  - A. 2019.
  - B. 2020.
  - C. 2021.
  - D. 2022.
- 7. Let k be a constant. If the equation  $2x^2 kx + 8 = 0$  has no real roots, then
  - A. k < 8. B. k > -8.
  - C. -8 < k < 8.
  - D. k < -8 or k > 8.
- 8. The solution of  $3 7x \le 10$  or  $\frac{5x + 4}{2} > x 4$  is
  - A.  $x \ge -1$ .
  - B.  $x \leq -1$ .
  - C. x > -4.
  - D. x < -4.
- 9. If the salary of Peter is 60% lower than the salary of Anson, then the salary of Anson is
  - A. 150% higher than the salary of Peter.
  - B. 67% higher than the salary of Peter.
  - C. 60% higher than the salary of Peter.
  - D. 50% higher than the salary of Peter.

10. Which of the following may represent the graph of  $y = -(1 - x)^2 + 3$ ?



11. If a = 3b and  $b: c = \frac{2}{3}:1$ , then a:b:c =A. 2:3:2. B. 3:3:2. C. 2:6:9.

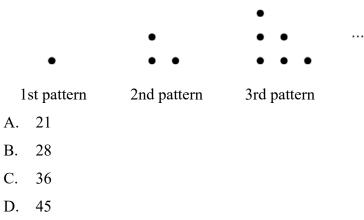
D. 6:2:3.

12. In the figure, ABCE is a rhombus. If  $\triangle CDE$  is an equilateral triangle, then  $\angle BCE =$ 

В

Е

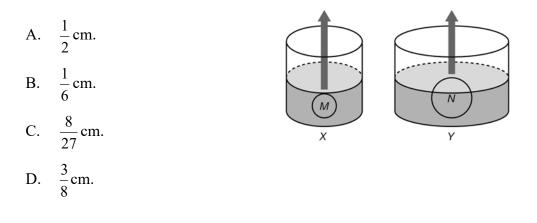
С


D

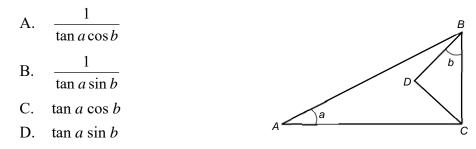
- A. 17°.
- B. 26°.
- C. 34°.
- D. 43°.

13. Suppose  $z \propto \sqrt{y}$  and  $y \propto \frac{1}{x}$ . Which of the following must be a constant?

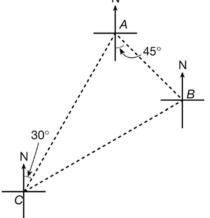
A.  $\sqrt{xz}$ B.  $\sqrt{yz}$ C.  $\sqrt{xy}$ D.  $\sqrt{xyz}$ 


- 14. It is given that  $a = \frac{v^2}{r}$ . If v is increased by 10% and a is increased by 12%, then r is
  - A. increased by  $\frac{225}{28}$ %. B. increased by  $\frac{162}{25}$ %. C. decreased by  $\frac{25}{14}$ %. D. decreased by  $\frac{275}{28}$ %.
- 15. In the figure, the 1st pattern consists of 1 dot. For any positive integer *n*, the (n + 1)th pattern is formed by adding (n + 1) dots to the *n*th pattern. Find the number of dots in the 7th pattern.

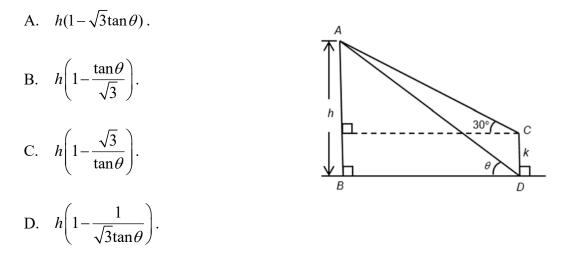



- 16. The figure shows a quadrant *OABC* of a circle. If OC = 2 cm and OD = 1 cm, then the area of the shaded region *BCD* is
  - A.  $\left(\frac{2\pi}{3} \frac{\sqrt{3}}{2}\right)$  cm<sup>2</sup>. B.  $\pi$  cm<sup>2</sup>. C.  $\frac{\pi}{2}$  cm<sup>2</sup>. D.  $\left(\frac{\pi}{3} + \frac{\sqrt{3}}{2}\right)$  cm<sup>2</sup>.




- 17. If an interior angle of a regular *n*-sided polygon is greater than an exterior angle by 135°, which of the following is true?
  - A. The value of n is 14.
  - B. The sum of interior angles of the polygon is 2520°.
  - C. Each interior angle of the polygon is 158°.
  - D. The number of diagonals of the polygon is 30.
- 18. In the figure, X and Y are two right cylindrical containers each containing some water. The two containers are placed on the same horizontal surface. The internal base radii of X and Y are in the ratio 1 : 3. *M* and *N* are two spheres in X and Y respectively. Suppose both spheres are totally immersed in the water and their radii are in the ratio 2 : 3. If *M* is taken out from *X*, the drop in water level in *X* is 1 cm. If *N* is taken out from *Y*, the drop in water level in *Y* is

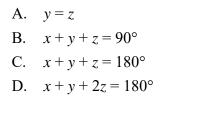


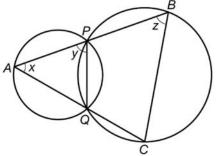

19. In the figure,  $\angle ACB = \angle BDC = 90^\circ$ . Find  $\frac{AC}{CD}$ .



- 20. In the figure, the compass bearing of *B* from *A* is S45°E and that of *A* from *C* is N30°E. If AC = BC, then the true bearing of *C* from *B* is
  - A. 210°.
  - B. 225°.
  - C. 240°.
  - D. 255°.

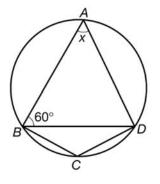



21. In the figure, *AB* and *CD* are two buildings of heights *h* and *k* respectively. If the angles of elevation of *A* from *C* and *D* are 30° and  $\theta$  respectively, then k =

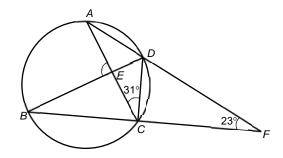



22. If 
$$\sin x = \frac{1}{2}$$
, where  $90^{\circ} < x < 180^{\circ}$ , then  $\tan x =$   
A.  $\frac{1}{\sqrt{3}}$ .  
B.  $-\frac{1}{\sqrt{3}}$ .  
C.  $\sqrt{3}$ .  
D.  $-\sqrt{3}$ .

S5 Mathematics Compulsory Part


23. In the figure, two circles intersect at *P* and *Q*. *APB* and *AQC* are straight lines. Which of the following must be true?

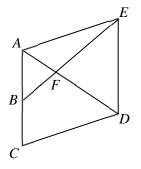




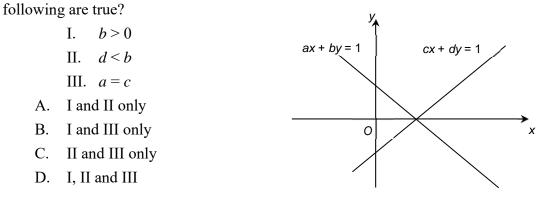

24. In the figure,  $\widehat{BC}: \widehat{CD}: \widehat{DA} = 2:2:3$ . If  $\angle ABD = 60^\circ$ , then x =

- A. 40°.
- B. 60°.
- C. 80°.
- D. 100°.




- 25. In the figure, *BD* is a diameter of the circle *ABCD*. *AC* and *BD* intersect at *E*. *AD* produced and *BC* produced meet at *F*. If  $\angle AFB = 23^{\circ}$  and  $\angle DCE = 31^{\circ}$ , then  $\angle AEB =$ 
  - A. 82°.
  - B. 90°.
  - C. 95°.
  - D. 118°.




26. In the figure, ACDE is a parallelogram and AB : ED = 1 : 2. AD and BE intersect at F.

If the area of  $\triangle ABF$  is 4 cm<sup>2</sup>, then the area of *ACDE* is

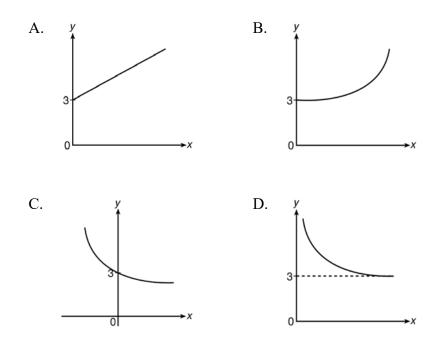
- A. 24 cm<sup>2</sup>.
- B.  $32 \text{ cm}^2$ .
- C.  $48 \text{ cm}^2$ .
- D.  $56 \text{ cm}^2$ .



- 27. The *x*-intercept of a straight line *L* is twice its *y*-intercept. If *L* passes through (6, 2), then the equation of *L* is
  - A. x + 2y = 6. B. x + 2y = 10. C. x - 2y = 6. D. x - 2y = 10.
- 28. In the figure, the two straight lines intersect at a point on the positive x-axis. Which of the



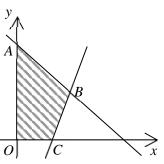
29. The equation of the circle C is  $5x^2 + 5y^2 + 12x - 6y = 11$ . Which of the following is/are true?


- I. The origin lies inside *C*.
- II. The area of *C* is  $4\pi$ .
- III. The coordinates of the centre of *C* are (-6, 3).
- A. II only
- B. III only
- C. I and II only
- D. I and III only
- 30. The equation of circle C is  $x^2 + y^2 12x + 8y + 48 = 0$ . If P is a moving point in the rectangular plane such that the distance from P to C is always 3 units, then the locus of P is
  - A. a straight line.
  - B. a parabola.
  - C. a circle.
  - D. a pair of circles.

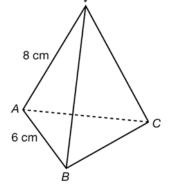
31. 
$$\frac{2x}{(2x-1)^2} - \frac{1}{1-2x} =$$
A. 
$$\frac{1}{2x-1}$$
B. 
$$-\frac{1}{(2x-1)^2}$$
C. 
$$\frac{1}{(2x-1)^2}$$
D. 
$$\frac{4x-1}{(2x-1)^2}$$

- 32.  $110001011001_2 =$ 
  - A.  $2^{11} + 2^{10} + 89$ .
  - B.  $2^{11} + 2^{10} + 177$ .
  - C.  $2^{12} + 2^{11} + 89$ .
  - D.  $2^{12} + 2^{11} + 177$ .

- 33. For  $0^{\circ} < \theta < 360^{\circ}$ , how many roots does the equation  $4 \sin \theta = 4 \cos^2 \theta$  have?
  - A. 1
  - B. 2
  - C. 3
  - D. 5

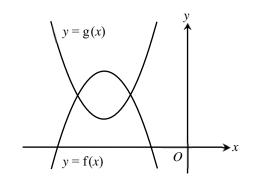

34. Which of the following may represent the graph of  $y = 2.5^{-x} + 2$ ?



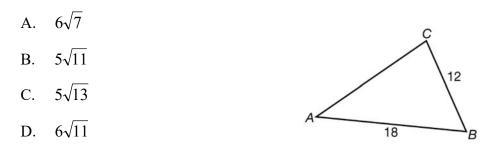

- 35. If  $2(\log_4 x)^2 + \log_4 x = 6$ , then x =
  - A. 8.
  - B.  $\frac{1}{8}$  or 16.
  - C. 1 or 2.

D. 8 or 
$$\frac{1}{16}$$
.

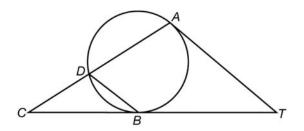
- 36. In the figure, the equations of the straight lines *AB* and *BC* are x + y = 6 and 3x y = 6 respectively. If (x, y) is a point lying in the shaded region *OABC* (including the boundary), then the maximum value of 3x 2y + 15 is  $y_{A}$ 
  - A. 12.
  - B. 15.
  - C. 18.
  - D. 21.




- 37. The figure shows a right pyramid *VABC* with equilateral triangular base *ABC*. The slant height of the pyramid is 8 cm and the side length of its base is 6 cm. Find the height of the pyramid *VABC* respect to the base *VAB*, correct to 3 significant figures.
  - A. 5.05 cm
  - B. 5.20 cm
  - C. 7.21 cm
  - D. 7.42 cm



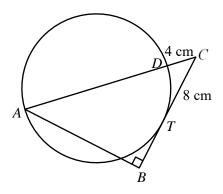

38. The figure shows the graphs of y = f(x) and y = g(x). Which of the following may be correct?


- A. g(x) = f(-x) 3
- B. g(x) = f(-x) + 3
- C. g(x) = -f(x) 3
- D. g(x) = -f(x) + 3



39. In the figure,  $\triangle ABC$  is an acute-angled triangle. If  $\sin B = \frac{\sqrt{3}}{2}$ , find AC.




- 40. In the figure, *TA* and *TC* are tangents to the circle at *A* and *B* respectively. *AC* cuts the circle at *D*. It is given that  $\angle ATB = 40^{\circ}$  and  $\angle ACB = 32^{\circ}$ . Find  $\angle DBC$ .
  - A. 32°
  - B. 38°
  - C. 40°
  - D. 42°



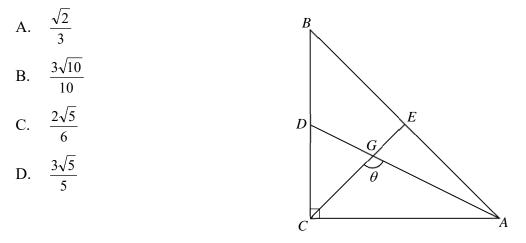
41. In the figure, AD is a diameter of the circle. BC is the tangent to the circle at T such that

 $AB \perp BC$  and ADC is a straight line. If TC = 8 cm and CD = 4 cm, find the length of BT.

- A. 7.2 cm
- B. 6 cm
- C. 4.8 cm
- D. 4 cm



42. The graph in the figure shows the linear relation between x and log<sub>8</sub> y. If  $y = \frac{h}{k^x}$ , then k =




- 43. Let  $x_n$  be the *n*th term of an arithmetic sequence. If  $x_{18} + x_{20} = 92$  and  $x_{200} + 300 = x_{100}$ , which of the following are true?
  - I. The first term of the sequence is 100.
  - II.  $x_1 + x_2 + x_3 + \dots + x_{2\ 021} < -5.9 \times 10^6$

III.  $x_{33}$  is the smallest positive term of the sequence.

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

44. The figure shows the right-angled triangle *ABC*, where  $\angle BCA = 90^\circ$ , AC = BC and *G* is the centroid of  $\triangle ABC$ . *AG* produced meets *BC* at *D*. *CG* produced meets *AB* at *E*. Find sin  $\theta$ .



- 45. Find the range of the values of k such that the circle  $(x + k)^2 + y^2 = 8$  and the straight line x + y = 0 intersect at two distinct points.
  - A.  $k \leq -4$  or  $k \geq 4$
  - B. k < -4 or k > 4
  - C.  $-4 \le k \le 4$
  - D. -4 < k < 4

— End of Paper —

| No<br>1.<br>2.<br>3.<br>4.<br>5. | Answer<br>A<br>B<br>C<br>D<br>C | No<br>31.<br>32.<br>33.<br>34.<br>35. | Answer<br>D<br>A<br>C<br>C<br>D |
|----------------------------------|---------------------------------|---------------------------------------|---------------------------------|
| 6.<br>7.<br>8.<br>9.<br>10.      | D<br>C<br>C<br>A<br>B           | 36.<br>37.<br>38.<br>39.<br>40.       | D<br>A<br>D<br>A<br>B           |
| 11.<br>12.<br>13.<br>14.<br>15.  | D<br>B<br>A<br>A<br>B           | 41.<br>42.<br>43.<br>44.<br>45.       | C<br>A<br>B<br>D                |
| 16.<br>17.<br>18.<br>19.<br>20.  | A<br>B<br>D<br>B<br>C           |                                       |                                 |
| 21.<br>22.<br>23.<br>24.<br>25.  | D<br>B<br>C<br>C<br>C           |                                       |                                 |

С

B D C C

26.

20. 27. 28. 29. 30.