FUKIEN SECONDARY SCHOOL S5 Final Examination (2020-2021) Mathematics Extended Part Module 2 (2 hours 30 minutes)

Date: 22nd June 2021 Time: 8:30 a.m.-11:00 a.m.

Name:	
Class:	No.:

Instructions to students:

- 1. This paper consists of TWO sections, A and B.
- 2. Attempt ALL questions in Section A and Section B.
- 3. Write your answers in the Answer Book provided.
- 4. Unless otherwise specified, show all workings clearly.
- 5. Unless otherwise specified, numerical answers must be exact.
- 6. The diagrams in this paper are not necessarily drawn to scale.

FORMULAS FOR REFERENCE

$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$	$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$
$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$	$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$
$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$	$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
$2\sin A\cos B = \sin (A+B) + \sin (A-B)$	$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$
$2\cos A\cos B = \cos (A+B) + \cos (A-B)$	
$2\sin A\sin B = \cos (A - B) - \cos (A + B)$	

Section A (50 marks)

1.	Find	$\frac{d}{dx}\tan 5x$	from first principles.	(5 marks)

- 2. Let *n* be a positive integer and *a* be a non-zero constant. In the expansion of $(1 + ax)^n$, the ratio of the coefficient of x^5 to that of x^3 is $3a^2 : 5$.
 - (a) Find the value of *n*.
 - (b) Express the constant term in the expansion of $(1+ax)^n \left(2+\frac{1}{x}\right)^2$ in terms of *a*.

(5 marks)

(5 marks)

- 3. (a) If $(\sqrt{3} \sqrt{2}) \tan A = (\sqrt{3} + \sqrt{2}) \tan B$, prove that $\sqrt{2} \sin (A + B) = \sqrt{3} \sin (A B)$.
 - (b) Using (a), solve the equation $(\sqrt{3} \sqrt{2}) \tan\left(x + \frac{2\pi}{5}\right) = (\sqrt{3} + \sqrt{2}) \tan\left(x + \frac{3\pi}{20}\right)$, where $0 \le x \le \frac{\pi}{2}$.

_____ _____ _____ _____ _____ _____ _____ _____ _____

- 4. (a) Using integration by parts, find $\int x^k \ln x \, dx$, where k is a positive constant.
 - (b) Consider the curve $\Gamma: y = \sqrt{x} \ln x$, where $1 \le x \le 4$. Let *R* be the region bounded by Γ , the *x*-axis, and the lines x = 1 and x = 4.
 - (i) Find the area of R.
 - (ii) Find the volume of the solid of revolution generated by revolving R about the x-axis.

(7 marks)

5. (a) Using mathematical induction, prove that

$$\sum_{k=1}^{n} \frac{1}{(3k-2)(3k+1)} = \frac{n}{3n+1}$$

for all positive integers *n*.

(b) Using (a), evaluate
$$\sum_{k=2}^{97} \frac{3}{(3k-2)(3k+1)}$$
.

(6 marks)

6. Consider the curve Γ : $y = \frac{1}{2}\sqrt{20 - x^2}$, where $0 < x < 2\sqrt{5}$. Denote the tangent to Γ at x = 4 by *L*.

- (a) Find the equation of *L*.
- (b) Let C be the curve $y = \sqrt{\frac{25}{2} x^2}$, where $0 < x < \frac{5\sqrt{2}}{2}$. It is given that L is a tangent to C.
 - (i) Find the point(s) of contact of L and C.
 - (ii) P(u, v) is a moving point on *C* such that *u* increases at a constant rate of 2 units per second. Find the rate(s) of change of *v* when *P* is at the point(s) of contact of *L* and *C*. (7 marks)

7. Consider the following system of linear equations in real variables x, y, z

(E):
$$\begin{cases} x + 2y + hz = k \\ 2x - 3y + z = 12 \\ 4x + y - z = 2 \end{cases}$$
, where $h, k \in \mathbb{R}$.

- (a) Assume that (*E*) has a unique solution.
 - (i) Find the range of values of *h*.
 - (ii) Express z in terms of h and k.
- (b) Assume that (*E*) has infinitely many solutions. Solve (*E*).

(6 marks)

S5 Mathematics Extended Part Module 2	Page 12 of 24 pages
8. ABC is a triangle. D is the mid-point of AC. E is a point lying on BC such that	
\overrightarrow{AB} is produced to the point F such that \overrightarrow{DEF} is a straight line. It is given that \overrightarrow{DEF}	
$\overrightarrow{OA} = \mathbf{i} - \mathbf{j} + 4\mathbf{k}$, $\overrightarrow{OB} = -\mathbf{i} + 5\mathbf{j} - \mathbf{k}$ and $\overrightarrow{OC} = 3\mathbf{i} - 3\mathbf{j}$, where O is the origin.	
(a) By expressing \overrightarrow{AE} and \overrightarrow{AF} in terms of r, find r.	
(b) (i) Find $\overrightarrow{AD} \cdot \overrightarrow{DE}$.	
(ii) Are B, D, C and F concyclic? Explain your answer.	
	(9 marks)

Section B (50 marks)

Sec	tion	B (50 marks)	
9.	Let	$f(x) = \frac{(x-2)^2 - 7}{x+2}$ for all real numbers $x \neq -2$. Denote the graph of $y = f(x)$ by	<i>G</i> .
	(a)	Find the asymptote(s) of G.	(3 marks)
	(b)	Find $f'(x)$.	(1 mark)
	(c)	Find the maximum point and the minimum point of G .	(4 marks)
	(d)	Let R be the region bounded by G , the x-axis, the y-axis and the vertical line p through the minimum point of G . Find the volume of the solid of revolution g revolving R about the x-axis.	

- 10. (a) Prove that $\frac{1+\sin 2t}{1+\cos 2t} = \frac{1}{2}\sec^2 t + \tan t$.
 - (b) Let f(x) be a differentiable function and f'(x) be the first derivative of f(x) with respect to x. Prove that $\int e^x [f(x) + f'(x)] dx = e^x f(x) + C$, where C is any constant. (2 marks)

(c) Using (a) and (b), evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{e^{x}(1+\sin x)}{1+\cos x} dx$$
. (4 marks)

(d) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{1 + \cos x}{e^{x}(1 + \sin x)} dx$$
. (4 marks)

(2 marks)

11. Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ a(1-c) & c-b & 1 \\ ab(1-c) & -b^2 & b+c \end{pmatrix}$$
 and $M = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ ab & b & 1 \end{pmatrix}$, where *a*, *b* and *c* are real numbers.

- (a) (i) Express M^{-1} in terms of a and b.
 - (ii) Express $M^{-1}AM$ in terms of c.
 - (iii) Let λ be a non-zero real number. Prove that $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda^n & n\lambda^{n-1} \\ 0 & 0 & \lambda^n \end{pmatrix}$ for all

positive integers *n*.

(b) Using (a), evaluate
$$\begin{pmatrix} 2 & 0 & 0 \\ 4 & 2 & 2 \\ 8 & -8 & 10 \end{pmatrix}^{99}$$
.

(3 marks)

(10 marks)

- 12. Let $\overrightarrow{OA} = \mathbf{i} 2\mathbf{j}$, $\overrightarrow{OB} = -7\mathbf{i} 2\mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{OC} = -\mathbf{i} + \mathbf{j} + 2\mathbf{k}$, where *O* is the origin.
 - (a) (i) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.
 - (ii) Hence, find the volume of the tetrahedron OABC.

(5 marks)

(b) Denote the plane containing A, B and C by Π . Let $\overrightarrow{OP} = -4\mathbf{j} + 8\mathbf{k}$ and $\overrightarrow{OQ} = -9\mathbf{i} + 2\mathbf{j} - 10\mathbf{k}$. The straight line passing through P and Q intersects Π at D.

- (i) Is \overrightarrow{PQ} perpendicular to Π ? Explain your answer.
- (ii) Find PD : DQ.
- (iii) Describe the geometric relationship between AB, CD and PQ. Explain your answer.

(8 marks)

 ,

- End of Paper -