Fukien Secondary School S4 Final Examination (2020-2021) Mathematics Compulsory Part Paper I (2 hours)

Date: 16th June, 2021 Time: 8:30 a.m.- 10:30 a.m.

Name:	
Class:	No. :

Instructions to students:

- 1. This paper consists of THREE parts, Section A(1), Section A(2) and Section B. Section A(1) carries 40 marks. Section A(2) carries 35 marks. Section B carries 25 marks.
- 2. The maximum score of this paper is 100.
- 3. Attempt ALL questions and write your answers in the spaces provided in this Question / Answer Book.
- 4. Unless otherwise specified, show your workings clearly.
- 5. Unless otherwise specified, numerical answers should either be exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Section A(1) (40 marks)

1. Simplify
$$\frac{(xy^2)^2}{x^{-7}y^6}$$
 and express your answer with positive indices.

(3 marks)

2. (a) Round off 202.1495 to 2 significant figures.

- (b) Round down 202.1495 to 2 decimal places.
- (c) Round up 202.1495 to the nearest thousand.

(3 marks)

3. Factorize

- (a) $4a 4 a^2$
- (b) $2b ab + 4a 4 a^2$

(3 marks)

4.	Make <i>m</i> the subject of the formula $\frac{p+4m}{3-p} = 2m$.
	(3 marks)
5.	In a polar coordinate system, the polar coordinates of the points <i>P</i> and <i>Q</i> are $(5,52^{\circ})$ and $(10,112^{\circ})$
	 (10,112°). (a) Let O be the pole. Someone claims that OP is perpendicular PQ. Do you agree? Explain your answer.
	(b) Find PQ . (4 marks)

6. A sum of money \$424 is first divided into two parts. Albert and Bob then further divide the two parts between themselves, in the ratio 7:2 for the first part and 1:2 for the second part. If they receive equal amounts in total, find the amount of the second part.

(4 marks)

<u>_</u>

7. If the graph of $y = 4x^2 - 12x + (k-1)$ cuts the x-axis at two points, find

- (a) the range of values of k,
- (b) the x-intercepts of the graph when k is the largest integer in (a).

S4 Mathematics Compulsory Part

- 8. It is given that $f(x) = 9(2^x)$, $g(x) = 3\left(\frac{1}{2}\right)^x$ and $h(x) = \frac{f(x)}{g(x)}$.
 - (a) Express h(x) in the form ka^x .
 - (b) Find the value of b such that h(b) = 195.

(4 marks)

- 9. Let $z = (3+i) + k \left(\frac{1}{3+i}\right)$, where k is a real number. If the imaginary part of z is 2, find
 - (a) the value of k,
 - (b) *z*.

10. Let $f(x) = 2x^2 - 13x + k$, where k is a constant. If f(x) is divisible by x - 5, find the remainder when f(x) is divided by 2x + 5.

(4 marks)

11. (a) Simplify $\frac{\cos(90^\circ + x)\sin(270^\circ + x)}{\sin(180^\circ - x)}$. (b) Hence, solve $\frac{\cos(90^\circ + x)\sin(270^\circ + x)}{\sin(180^\circ - x)} = \frac{2}{3}$, for $0^\circ \le x \le 360^\circ$. (Give your answers correct to 1 decimal place.) (4 marks)

Section A(2) (35 marks)

12. (a) Let $f(x) = -x^2 + 24x$. Using the method of completing the square, find the coordinates of the vertex of the graph y = f(x).

(2 marks)

- (b) The length of a fence is 24m. Darren cuts the fence into two parts. One part is used to enclose his small farmland of area $A m^2$, which is in the shape of an equilateral triangle. The other part of length d m is used to divide the farmland into two equal parts as shown in Figure 1.
 - (i) Express A in terms of d.
 - (ii) Darren claims that the area of his farmland cannot be greater than $25m^2$. Do you agree? Explain your answer.

ďm
Figure 1
P

- 13. Let f(x) = (x+m)(x+n)(3x-1)+2, where *m* and *n* are positive integers and m > n. When f(x) is divided by x-1, the remainder is 14.
 - (a) (i) Show that (m+1)(n+1) = 6.
 - (ii) Write down the values of m and n.

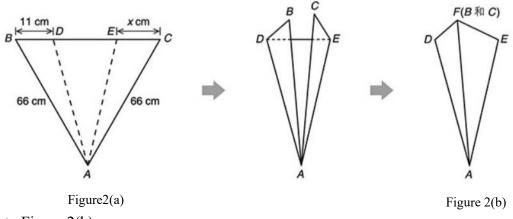
(4 marks)

- (b) Let $g(x) = k(x^2 + x + 2)$, where k is a non-zero constant. It is given that f(x) g(x) is divisible by x+1.
 - (i) Find the value of k.
 - (ii) Edmond claims that only one of the roots of the equation f(x) g(x) = 0 is real. Do you agree ? Explain your answer.

(5 marks)

1
······
1
 ······

14. (a) It is given that α and β are the roots of the equation $x^2 + x - 5 = 0$. Find the value of $\frac{\alpha + \beta}{2}$.


(1 mark)

- (b) On a rectangle coordinate plane, the straight line y = mx + 3 intersects the quadratic curve $y = 2x^2 2x 7$ at two points *A* and *B*. It is given that the *x*-coordinate of the mid-point of *AB* is $-\frac{1}{2}$.
 - (i) Find the value of m.
 - (ii) Hence, find the *y*-coordinate of the mid-point of *AB*.

(5 marks)

<u>-</u>

15. Figure 2(a) shows a piece of equilateral triangular paper *ABC* of side 66cm. *D* and *E* are points on *BC* such that BD = 11cm and EC = xcm. The paper *ABC* is folded along *AD* and *AE*, so that the edge *AC* coincides with the edge *AB* to form a quadrilateral *ADFE* as shown in Figure 2(b). (i.e. *A*, *D*, *E* and *F* lie on the same horizontal ground.)

Refer to Figure 2(b).

- (a) (i) Find $\angle DFE$.
 - (ii) Hence, find the value of x.
- (b) Find the area of quadrilateral *ADFE*.

(4 marks)

(3 marks)

	······
	······
	······
	,

16. In Figure 3, *ABCD* is a square and *BDGE* is a parallelogram. *BCF*, *DCE* and *EFG* are straight lines.

straig	ght lines.		
(a)	Prove that		A B
	(i) $\Delta BCD \sim \Delta FCE$,		
	(ii) $\triangle BCE \cong \triangle DCF.$		
		(4 marks)	
(h)	It is given that $\angle CDE = 20^\circ$. For the sides EE	and EC	
(b)	It is given that $\angle CBE = 30^\circ$. For the sides <i>EF</i>	and FG,	
	which one is longer? Explain your answer.		$D \leftarrow E$
		(3 marks)	
		(0 1111111)	
			\setminus Y_F
			\checkmark
			G
			E: 2
			Figure 3

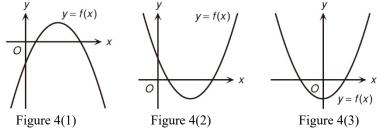
Section B (12-25 marks)

In this section, answer part (X) or part (Y) in each question. Do not answer both parts. If both parts in a question are attempted, only part (X) will be marked.

17X. Consider the equation
$$\frac{\log_2 a \cdot \log_2 x}{\log_2 \left(\frac{x}{2}\right)} - \frac{\log_2 b}{\log_2 x^2} = 0$$
, where $a > 0, b > 0$ and $a, b \neq 1$.

(a) Set up a quadratic equation $\operatorname{in} \log_2 x$. (1 mark)

(b) If the equation has a double real root, express
$$b$$
 in terms of a . (3 marks)


(c) Solve
$$\frac{\log_2 x}{2\log_2\left(\frac{x}{2}\right)} - \frac{4}{\log_2 x^2} = 0.$$
 (2 marks)

17Y. Solve
$$\left[\log_3\left(x-\frac{1}{3}\right)\right]^2 + 4\log_3\left(x-\frac{1}{3}\right) + 3 = 0$$
.

(3 marks)

- 18X. Consider the function f(x) = A(x-7)(x+2) + B(x+1) + 4, where A and B are constants. It is given that f(7) = 12 and f(-1) = -4.
 - (a) Find the values of A and B.

- (2 marks)
- (b) The figure below shows three sketches of the graph of y = f(x) drawn by three students. The teacher points out that the three sketches are all incorrect. Explain why each of the sketches is incorrect.

- (c) Let α and β be the two x-intercepts of the graph of y = f(x). If the two x-intercepts of the graph of $y = x^2 + bx + c$ are $\alpha 2\beta$ and $\beta 2\alpha$, find the values of b and c. (3 marks)
- 18Y. The Figure 5 shows the graph of $y = 2x^2 3x 9$. It cuts the y-axis at P and Q is its vertex. Find the area of $\triangle OPQ$.

(5 marks)

(6 marks)

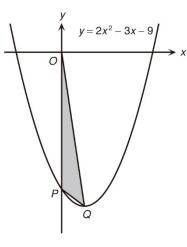
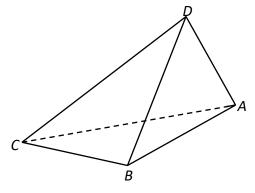



Figure 5

19X. Figure 6 shows a geometric model *ABCD* in the shape of a tetrahedron. It is given that AD = 15 cm, BC = 17 cm, CD = 27 cm, $\angle ABD = 58^{\circ}$, $\angle ADB = 65^{\circ}$ and $\angle ABC = 116^{\circ}$.

(a) Find AB and AC.

(4 marks)

(b) Let *K* be a point on *AD* such that $BK \perp AD$. Someone claims that $\angle BKC$ is the angle between the face *ABD* and the face *ACD*. Do you agree? Explain your answer.

(4 marks)

19Y. In Figure 7, *ABCD* is a tetrahedron, where $\triangle ABC \cong \triangle ADC$. It is given that BD = 9 cm, BC = DC = 8 cm and $\angle ACB = \angle ACD = 50^{\circ}$. Find the angle between the planes *ABC* and *ACD*.

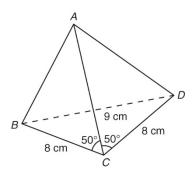


Figure 7

-End of Paper -