FUKIEN SECONDARY SCHOOL S4 Final Examination (2020-2021) Mathematics Extended Part Module 2 (2 hours)

Date: 22nd June 2021 Time: 8:30 a.m.-10:30 a.m.

Name:	
Class:	No.:

Instructions to students:

- 1. This paper consists of TWO sections, A and B.
- 2. Attempt ALL questions in Section A and Section B.
- 3. Write your answers in the Answer Book provided.
- 4. Unless otherwise specified, show all workings clearly.
- 5. Unless otherwise specified, numerical answers must be exact.

FORMULAS FOR REFERENCE

$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$	$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$
$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$	$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$
$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$	$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
$2\sin A\cos B = \sin (A+B) + \sin (A-B)$	$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$
$2\cos A\cos B = \cos (A+B) + \cos (A-B)$	
$2\sin A\sin B = \cos (A - B) - \cos (A + B)$	

Section A (58 marks)

1. Let $f(x) = \frac{7x}{4+3x^2}$. Prove that $f(1+h) - f(1) = \frac{h-3h^2}{7+6h+3h^2}$. Hence find f'(1) from first principles.

(4 marks)

- 2. In the expansion of $(1 4x)^n$, the sum of the coefficients of x and x^2 is 540, where n is a positive integer.
 - (a) Find the value of *n*.
 - (b) Find the coefficient of x^3 .

(4 marks)

_____ _____ _____ _____

- 3. Let $y = e^{3x} \sin x$.
 - (a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
 - (b) Let k be a constant. If $2\frac{d^2y}{dx^2} 3k^2\frac{dy}{dx} + 20y = 0$ for all real values of x, find the values of k.
- 4. Let h(x) be a continuous function defined on \mathbb{R}^+ , where \mathbb{R}^+ is the set of positive real numbers. It is given that $h'(x) = \frac{1}{x}(x^2 2x + 25)$ for all x > 0.
 - (a) Is h(x) an increasing function? Explain your answer.
 - (b) Denote the graph of y = h(x) by *H*. Prove that *H* has only one point of inflexion.

(5 marks)

(5 marks)

5. (a) Evaluate $\lim_{x \to 0} \frac{e^{5x} \sin 2x}{e^{3x} - e^{-3x}}.$ (b) Evaluate $\lim_{x \to \infty} x \ln\left(1 + \frac{2}{x} - \frac{3}{x^2}\right).$

(6 marks)

- 6. (a) Prove that $\sin(A-B)\sin(A+B) = \cos^2 B \cos^2 A$.
 - (b) Hence solve the equation $\sin\left(x-\frac{\pi}{6}\right)\sin\left(x+\frac{\pi}{6}\right)+\sin\left(x-\frac{\pi}{3}\right)\sin\left(x+\frac{\pi}{3}\right)=0$, where $0 \le x < \pi$.

Page 6 of 17 pages

- 7. Define $f(x) = x \ln x$ for all $x \in (0, 100)$. Denote the graph of y = f(x) by *F*.
 - (a) Prove that F has only one minimum point.
 - (b) Let *O* and *M* be the origin and the minimum point of *F* respectively. If *F* cuts the *x*-axis at *N*, find the area of $\triangle OMN$.

(6 marks)

(7 marks)

8. (a) Using mathematical induction, prove that $\sum_{r=1}^{n} (r+2)(1-r) = -\frac{n(n-1)(n+4)}{3}$ for all

positive integers n.

(b) Using (a), evaluate $\sum_{r=445}^{666} \left(\frac{r+2}{1\,036}\right) \left(\frac{r-1}{301}\right)$.

 ·
 ·
 ·
 •

9. The following table shows the characteristics of a polynomial function f(x) on different intervals of x.

x	<i>x</i> < -5	<i>x</i> = -5	-5 < x < -2	<i>x</i> = -2	-2 < x < 1	<i>x</i> = 1	<i>x</i> > 1
f(x)	/	-54	/	0	/	54	/
f'(x)	-	0	+	+	+	0	-
<i>f</i> "(<i>x</i>)	+	+	+	0	_	_	_

- (a) Find the range of values of x for which the curve y = f(x) is increasing.
- (b) Find the range of values of x for which the curve is concave downwards.
- (c) Find the maximum / minimum point(s) and point(s) of inflexion of the curve.
- (d) Sketch the curve y = f(x).

(7 marks)

10. (a) Using mathematical induction, prove that $\sin x \sum_{k=1}^{n} \sin 2kx = \sin nx \sin (n+1)x$ for all positive integers *n*.

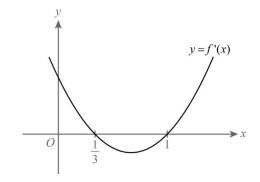
(b) Using the result of (a), evaluate $\sum_{k=1}^{369} \sin^2 \left(\frac{k\pi}{5} - \frac{\pi}{4} \right).$

(8 marks)

Page 10 of 17 pages

Section B (42 marks)

11. A function $f(x) = ax^3 + bx^2 + x$ is given, where *a* and *b* are constants. Figure 1 shows a sketch of the graph of y = f'(x).



(a) Find the values of *a* and *b*.

(3 marks)

(b) Find the x- and y-intercepts of the graph of y = f(x).

(2 marks)

(c) Find the maximum/minimum point(s) and point(s) of inflexion of the graph of y = f(x).

Figure 1

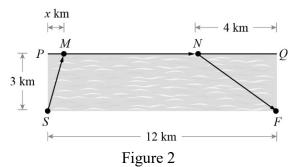
(5 marks)

(d) Sketch the graph of y = f(x).

(2 marks)

······································
······································

12. In Figure 2, PQ is a straight coastline of 12 km long. S and F are islands which are 3 km away from P and Q respectively, where $PS \perp PQ$ and $QF \perp PQ$. M and N are points on PQ such that PM = x km and NQ = 4 km.

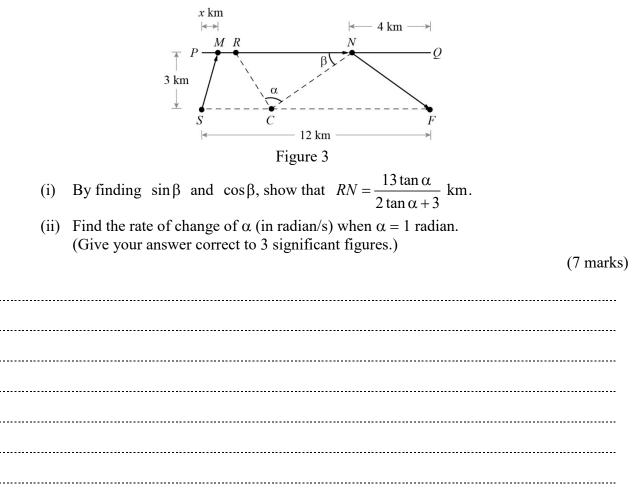


In a cross country competition, a team sails at a constant speed of 5 km/h along a straight path from S to M, and then cycles at a constant speed of 12 km/h along the coastline to N. Finally, the team sails at a constant speed of $\frac{300}{20-x}$ km/h, from N to the finish point F. Let T hours be the time taken by the team to complete the competition.

- (a) (i) Express T in terms of x.
 - (ii) Find the minimum value of T and the corresponding distance of SM.

(6 marks)

(b) In Figure 3, a camera crew stays at *C* for filming the team, where *C* lies on *SF* and the length of *SC* is $\sqrt{3}$ times the length of *SM* obtained in (a)(ii). Let $\angle RCN = \alpha$ and $\angle RNC = \beta$, where *R* is the position of the team on their way when they are cycling.



- 13. (a) (i) If $7\sin\theta 24\cos\theta$ is expressed in the form $r\sin(\theta A)$ where r > 0and $0^{\circ} < A < 90^{\circ}$, find r and A.
 - (ii) Let $y = 14\sin\theta 48\cos\theta + 14$. Using the result in (i), find the maximum and minimum values of y.

Find also the value(s) of θ for $0^{\circ} < \theta < 360^{\circ}$ at which y attains its maximum.

(10 marks)

(b) α and β are two acute angles satisfying the equation $6\cos^2 \theta - 5\cos \theta + 1 = 0$. Without solving the equation, show that

$$\cos\frac{\alpha+\beta}{2} + \cos\frac{\alpha-\beta}{2} = \sqrt{2}.$$

[Hint: $\cos^2\frac{x}{2} = \frac{1}{2}(1+\cos x).$]

(7 marks)

— End of Paper —		