Fukien Secondary School S2 Final Examination (2020-2021) Mathematics (1 hour 30 minutes)

Date: 15th June 2021 Time: 8:30 a.m. – 10:00 a.m.

Name: _____ Class: _____ No. : _____

Instructions to students:

- This paper consists of THREE parts, Conventional Questions, Multiple-choice Questions and Bonus Question. There are Section A(1), Section A(2) and Section B in Conventional Questions. Section A(1) carries 32 marks. Section A(2) carries 24 marks. Section B carries 24 marks. Multiple-choice Questions carry 20 marks. Bonus Questions carrie 5 marks.
- 2. The maximum score of this paper is 100.
- 3. Attempt ALL questions in Conventional Questions and Multiple-choice Questions. Write your answers in the spaces provided in this Question / Answer Book.
- 4. Unless otherwise specified, all workings must be clearly shown.
- 5. Unless otherwise specified, numerical answers should either be exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

S2 Mathematics	Page 2 of 16 pages
Conventional Questions	
Section A(1) (32 marks)	
1. Make x the subject of the formula $5(x - 2y) + 3 = 2(2y - x)$.	
	(3 marks)
2 (a) Eactorize $25h^2$ $64h^2$	
2. (a) Factorize $25h^2 + 15h - 64k^2 - 24k$	
(0) 1 actorize 25n + 15n 0 tr 2 tr.	(4 marks)
	(1 marks)
$x^2 + 37 + 8x$	
3. Simplify $\frac{1}{2y} \times \frac{1}{5xy} \times \frac{1}{2yz}$.	
	(3 marks)

- 4. (a) Factorize 2xy + 5y 2x 5.
 - (b) Using the result of (a), simplify $\frac{4x+10}{2xy+5y-2x-5}$.

(4 marks)

5. If *a* : *c* = 11 : 18 and *b* : *c* = 15 : 24, find *a* : *b* : *c*.

(3 marks)

6. In Figure 1, AC intersects BD at E. $\angle ABE = \angle DCE$ and $\angle ACB = \angle DBC$. Prove that $\triangle ABC \cong \triangle DCB$.

Figure 1

(3 marks)

8. In Figure 2, *ABCD* is a trapezium, where AD = 4.5, BC = 8 and CD = 6. Find the value of x.

.....

.....

.....

.....

.....

(4 marks)

.....

- 9. In Figure 3, *C* is a point on *BD* such that $AC \perp BD$. It is given that AB = 15 cm, BC = 9 cm and AD = 13 cm.
 - (a) Find AC. (b) Find the area of $\triangle ABD$. 15 cm $B \xrightarrow{9 \text{ cm}} C \xrightarrow{13 \text{ cm}} D$

(4 marks)

Section A(2) (24 marks)

.....

.....

10. (a) Express the surd $\sqrt{75}$ in its simplest form.

.....

(b) Simplify $\sqrt{192} + \sqrt{75}$. (c) Simplify $\frac{\sqrt{192} + \sqrt{75}}{\sqrt{30}}$ and rationalize the denominator of the result.

(6 marks)

.....

.....

11. Figure 4 shows $\triangle ABC$. Find the value of *h*.

		A 12 cm h cm B D C	
		Figure 4	(1 marks)
		(<u>4 marks)</u>
12.	(a)	Simplify $\frac{3\tan(90^\circ - \theta)}{\cos\theta} - \frac{1}{\cos(90^\circ - \theta)}$.	
	(b)	Given that $\sin (90^\circ - \theta) = \frac{4}{5}$, find the value of $5\cos\theta - \frac{\cos(90^\circ - \theta)}{\sin\theta - 1}$ without solving θ	
	(c)	Prove the identity $\frac{1-2\sin^2(90^\circ-\theta)}{\sin\theta+\cos\theta} = \sin\theta - \sin(90^\circ-\theta).$	
		$\sin \theta + \cos \theta$ (8 marks)

13. Figure 5 shows a logo of a company which is drawn on a wall outside the company's building. It is known that *O* is the centre of the sectors *BOC* and *AOD*. *OAB* and *ODC* are straight lines. The

length of \widehat{BC} is 15π m, OA : AB = 1 : 1 and $\angle AOD = 90^{\circ}$.

- (a) Find the radii of the sectors *AOD* and *BOC*.
- (b) Find the area of the shaded region *ABCD*.

Figure 5

(6	marks)	
· ·		

Section B (24 marks) $\begin{cases} x - 4y = 7\\ 3x + 2y = 14 \end{cases}$ 14. (a) Solve the simultaneous equations (b) Using the result of (a), solve the simultaneous equations $\begin{cases} m+4n = -7mn \\ 3m-2n = -14mn \end{cases}$ (6 marks) _____

- 15. Figure 6 shows a cylindrical container of height 20 cm with a cylindrical hole. The base diameters of the container and the hole are 22 cm and 8 cm respectively. It is given that 1050π cm³ of water is poured into the container.
 - (a) Find the depth of water inside the container.
 - (b) Find the area of the wet surface of the container.

Page 11 of 16 pages

16. Figure 7 shows a vertical tower *AB*. David and Tim stand at *C* and *D* respectively. If *C*, *B* and *D* are on the same horizontal line and CD = 250 m, find the height of the tower.

A A A A A A A A A A	
	(5 marks)

- 17. In Figure 8, *ABCDE* is a regular pentagon. *EA* and *BA* are produced to *J* and *G* respectively so that $\angle AJG = 25^{\circ}$. *JGF* is a straight line. *DA* is produced to cut *JG* at *H*.
 - (a) Find $\angle BAE$.
 - (b) Find *a* and *b*.

Multiple-choice Questions (20 marks)

Each question carries 2 marks. Put \checkmark in the correct boxes.

	18	19	20	21	22	23	24	25	26	27
А										
В										
С										
D										

- 18. Polly makes a scale drawing of a fashion model. The scale of her drawing is 1 : 24. Kenneth makes another scale drawing of the same model, where the height of the model in his drawing is 75% of that in Polly's drawing. Find the scale of Kenneth's drawing.
 - A. 1:18
 - B. 1:20
 - C. 1:30
 - D. 1:32

19. If $(x-3)(ax+5) \equiv -2x^2 + bx - 15$, then

- A. a = -2 and b = -1. B. a = -2 and b = 11. C. a = 2 and b = -1.
- D. a = 2 and b = 11.

20. (3a+2b+c)(3a-2b+c) =

A. $(3a+2b)^2 - c^2$ B. $(3a)^2 - (2b+c)^2$ C. $(3a+c)^2 - (2b)^2$ D. $(3a)^2 + (2b)^2 - c^2$

20. The following cumulative frequency curve shows the scores of 35 students in a mathematics quiz.

If the bottom 20% of the students have to re-test, find the maximum score for the students taking re-test.

- A. 20
- B. 25
- C. 26
- D. 32
- 22. Figure 9 shows the graphs of the simultaneous equations $\begin{cases} ax + y 4 = 0 \\ x + by + 2 = 0 \end{cases}$, where *a* and *b* are constants. The graphs intersect at a point (1, 3). Find the values of *a* and *b*.
 - A. a = 1, b = 1B. a = 1, b = -1C. a = -1, b = 1D. a = -1, b = -1

ax + y - 4 = 0 (1, 3) x

Figure 9

- 23. In Figure 10, AC and BD intersect at E. Find x.
 - A. 30°
 - B. 35°
 - C. 40°
 - D. 45°

С

24. In Figure 11, find the value of $\cos \angle C - \cos \angle B$.

- A. $\frac{\sqrt{11}}{6}$. B. $\frac{2}{3}$. C. $\frac{5}{6}$. D. 1.
- 26. In Figure 12, 2 identical semi-circles are cut from a larger semi-circle. *O* is the centre of the larger semi-circle. If the perimeter of the figure is 6π cm, find the area of the figure, correct to 2 decimal places.
 - A. 6.75 cm^2
 - B. 7.07 cm^2
 - C. 21.21 cm^2
 - D. 28.27 cm²

27. In Figure 13, *O* is the centre of the circle with radius 6 cm. *BOC* is a straight line and $\angle OAB = 35^{\circ}$. Find the length of \widehat{ABC} , correct to the nearest 0.1 cm.

- A. 7.3 cm
- B. 9.7 cm
- C. 11.5 cm
- D. 30.4 cm

Figure 13

Bonus Question (5 marks)

(5 marks)

END OF PAPER