

FUKIEN SECONDARY SCHOOL

S6 Mock Examination (2020-2021) Mathematics Extended Part Module 2 (2 hours 30 minutes)

Date: 25th January 2021 Time: 8:30a.m. - 11:00a.m.

Name:	
Class:	No.:

Instructions to students:

- 1. This paper consists of TWO sections, A and B.
- 2. Attempt ALL questions in Section A and Section B.
- 3. Write your answers in the spaces provided.
- 4. Unless otherwise specified, show your workings clearly.
- 5. Unless otherwise specified, numerical answers must be exact.
- 6. The diagrams in this paper are not necessarily drawn to scale.

FORMULAS FOR REFERENCE

$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$	$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$
$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$	$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$
$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$	$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
$2\sin A\cos B = \sin (A+B) + \sin (A-B)$	$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$
$2\cos A\cos B = \cos (A+B) + \cos (A-B)$	
$2\sin A\sin B = \cos (A - B) - \cos (A + B)$	

(4 marks)

Section A (50 marks)

1. Let $f(x) = \frac{x^3}{4-5x^2}$. Find f'(2) from first principles.

coef	fic	ien	(x	$(-\lambda)^{2}$	in	5 the	A	l nan		n o	f	P(r)	ic	_11	95	Fir	d			
		1011	ιUI	л	11	tiit	, UA	pan	1510	n o	1 1	(л)	15	-11	<i>))</i> .	1.11	lu			
(a)	λ,																			
(b)	Ρ"	(λ)	•																	
																				(6 ma

S6 Mathematics Extended Part Module 2

- 3. Let $y = x^2 \ln x$, where x > 0.
 - (a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

(b) Let k be a constant such that $x^2 \frac{d^2 y}{dx^2} + kx \frac{dy}{dx} + 4y = 0$ for all positive values of x.

Find the value of *k*.

(5 marks)

S6 Mathematics Extended Part Module 2

4. (a) If $\cot A = 3\tan B$, prove that $2\cos(A+B) = \cos(A-B)$.

(b) Using (a), solve the equation
$$\cot\left(x + \frac{11\pi}{15}\right) = 3\tan\left(x - \frac{4\pi}{15}\right)$$
, where $0 \le x \le \frac{\pi}{2}$.
(6 marks)

- 5. (a) Using mathematical induction, prove that $\sum_{k=1}^{n} (2k-1)^3 = n^2 (2n^2 1)$ for all positive integers *n*.
 - (b) Using (a), evaluate $\sum_{k=3}^{50} (2k-1)^3$.

(7 marks)

(7 marks)

- 6. (a) Using integration by substitution, find $\int x^5 \sqrt{x^3 + 9} dx$, where $x \ge -\sqrt[3]{9}$.
 - (b) At any point (x, y) on the curve Γ , the slope of the tangent to Γ is $10x^5\sqrt{x^3+9}$. The *y*-intercept of Γ is -100. Find the equation of Γ .

_____ _____ _____ 7. In Figure 1, a car, *X*, is travelling from *O* to *A* at a constant speed of 16 m s⁻¹, while another car, *Y*, is travelling from *B* to *O* at a constant speed of 18 m s⁻¹. $\angle AOB = \frac{\pi}{3}$. Let *x* m be the distance between

X and O, y m be the distance between Y and O, and k m be the distance between X and Y.

- (a) Express k^2 in terms of x and y.
- (b) Find the rate of change of the distance between *X* and *Y* when x = 300 and y = 800.

(7 marks)

8. Consider the system of linear equations in real variables x, y, z

$$(E):\begin{cases} x & -y + z = 2k \\ 3x + 5y + (h+1)z = 4 \\ 4x + hy + (2h-3)z = k+2 \end{cases}$$
, where *h* and *k* are real numbers.

- (a) Assume that (*E*) has a unique solution.
 - (i) Prove that $h \neq 6$ and $h \neq 8$.
 - (ii) Express z in terms of h and k.
- (b) Assume that h = 8 and (*E*) is consistent.
 - (i) Find *k*.
 - (ii) Solve (E).

(8 marks)

Section B (50 marks)

9.	Let j	$f(x) = \frac{x^2 + cx - 5}{x + 3}$, where c is a constant and $x \neq -3$. Denote the graph of $y = f(x)$	c) by <i>G</i> . It is
	give	n that the oblique asymptote of G passes through the point (8, 1).	
	(a)	Find the value of <i>c</i> .	(2 marks)
	(b)	Find $f'(x)$.	(2 marks)
	(c)	Find the maximum point and the minimum point of <i>G</i> .	(4 marks)

(d) Let *R* be the region bounded by *G*, the line y = x + 9, the line x = m and the *y*-axis, where m > 0. Is the area of *R* less than 16*m*? Explain your answer. (4 marks)

_____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

10. (a) (i) Prove that
$$\int \tan^4 x dx = \frac{1}{3} \tan^3 x - \int \tan^2 x dx$$
.
(ii) Evaluate $\int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} \tan^4 x dx$.

(5 marks)

(b) (i) Let f(x) be a continuous function for $a \le x \le b$, where a and b are constants, such that f(x) = f(a+b-x) for all $a \le x \le b$. Prove that $\int_a^b xf(x)dx = \frac{a+b}{2}\int_a^b f(x)dx$.

(ii) Evaluate
$$\int_{\frac{3\pi}{4}}^{\frac{3\pi}{4}} x \tan^4 x dx$$
.

(5 marks)

(3 marks)

(c) Consider the curve Γ : $y = \sqrt{x} \tan^2 x$, where $\frac{7\pi}{4} \le x \le \frac{9\pi}{4}$. Let *R* be the region bounded by Γ , the *x*-axis, the two lines $x = \frac{7\pi}{4}$ and $x = \frac{9\pi}{4}$. Find the volume of the solid of revolution generated by revolving *R* about the *x*-axis.

S6 Mathematics Extended Part Module 2

11. Let
$$A = \begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix}$$
 and $P = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$.
(a) (i) Evaluate $P^{+}AP$.
(ii) Evaluate $P^{-1}AP$.
(5 marks)
(b) For any matrix $\begin{pmatrix} x \\ y \end{pmatrix}$, define $\left\| \begin{pmatrix} x \\ y \end{pmatrix} \right\| = \sqrt{x^{2} + y^{2}}$.
(i) For any matrix $\begin{pmatrix} x \\ y \end{pmatrix}$, prove that $\left\| P \begin{pmatrix} x \\ y \end{pmatrix} \right\| = \left\| \begin{pmatrix} x \\ y \end{pmatrix} \right\|$ for any matrix $\begin{pmatrix} x \\ y \end{pmatrix}$.
(ii) By considering $\begin{pmatrix} u \\ y \end{pmatrix} = P^{-1} \begin{pmatrix} x \\ y \end{pmatrix}$, prove that $\left\| A \begin{pmatrix} x \\ y \end{pmatrix} \right\| \le 11 \begin{pmatrix} x \\ y \end{pmatrix} \right\|$ for any matrix $\begin{pmatrix} x \\ y \end{pmatrix}$.
(7 marks)

12. Let $\overrightarrow{OP} = 5\mathbf{i} + t\mathbf{j} + \mathbf{k}$, $\overrightarrow{OQ} = \mathbf{i} + \mathbf{j} - t\mathbf{k}$ and $\overrightarrow{OA} = 2\mathbf{j} + 2\mathbf{k}$, where *t* is a constant and *O* is the origin. It is

given that A is equidistant from P and Q.

(a) Find t.

(3 marks)

(b) Let $\overrightarrow{OR} = -\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$ and $\overrightarrow{OS} = 3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$. Denote the plane which contains *P*, *Q* and *R* by

П.

- (i) Find a unit vector which is perpendicular to Π .
- (ii) Find the angle between RS and Π .
- (iii) It is given that *T* is a point lying on Π such that \overline{ST} is perpendicular to Π . Let *U* be a point such that $\overline{AU} = 2\overline{AQ} 2\overline{AR}$. Describe the geometric relationship between *S*, *T* and *U*. Explain your answer.

(10 marks)

End	of	Test