FUKIEN SECONDARY SCHOOL S5 First Term Examination (2020-2021) Mathematics Extended Part Module 2 (2 hours)

Date: 12th January 2021 Time: 8:30 a.m.-10:30 a.m.

Name:	
Class:	No.:

Instructions to students:

- 1. This paper consists of TWO sections, A and B.
- 2. Attempt ALL questions in Section A and Section B.
- 3. Write your answers in the Answer Book provided.
- 4. Unless otherwise specified, show all workings clearly.
- 5. Unless otherwise specified, numerical answers must be exact.

FORMULAS FOR REFERENCE

$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$	$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$
$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$	$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$
$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$	$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
$2\sin A\cos B = \sin (A+B) + \sin (A-B)$	$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$
$2\cos A\cos B = \cos (A+B) + \cos (A-B)$	
$2\sin A\sin B = \cos (A - B) - \cos (A + B)$	

Section A (50 marks)

1. Evaluate

(a)
$$\int_{0}^{3} (x+2)\sqrt{4-x}dx$$
 (b) $\int_{0}^{\frac{\pi}{6}} \cos^{3} 3x \, dx$ (c) $\int_{-3}^{3} \frac{1}{(x^{2}+3)^{\frac{3}{2}}} dx$ (d) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (1+2x^{3}\cos^{5}x) \, dx$

- (13 marks)
- 2. It is given that f(x) is an even function. If $\int_{0}^{6} f(x)dx = a$ and $\int_{-6}^{6} [f(x) + 3x^{2}]dx = 440$, find the value of a. (3 marks)

<u>-</u>

3. (a) Using integration by parts, evaluate $\int_{1}^{3} x^{2} \ln x \, dx$.

(b) Using substitution
$$u = \frac{1}{x}$$
 and (a), evaluate $\int_{\frac{1}{3}}^{1} \frac{\ln x}{x^4} dx$. (4 marks)

4. (a) Evaluate
$$\int_{\ln 2}^{\ln 3} \frac{e^{-x}}{1-e^{-x}} dx$$
.

(b) If
$$\frac{1}{u(u-1)} \equiv \frac{A}{u} + \frac{B}{u-1}$$
, find the values of A and B.

(c) Using (a) and (b), or otherwise, evaluate $\int_{\ln 2}^{\ln 3} \frac{1}{e^x(e^x-1)} dx$.

_____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

(6 marks)

5. Figure 1 shows the curve $y^2 + 1 = 2(x+1)$. P(4, 3) is a point on the curve.

- (a) Find the equation of the tangent to the curve at *P*.
- (b) Find the area of the shaded region bounded by the curve, the tangent and the *x*-axis.

(6 marks)

6. (a) Prove that
$$\int_a^b f(x)dx = \int_a^b f(a+b-x)dx$$
.

(b) Hence, or otherwise, evaluate the following definite integrals.

(i)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \ln(\tan x) dx$$

(ii) $\int_{5}^{10} \frac{x^{10}}{x^{10} + (15 - x)^{10}} dx$

(6 marks)

In Figure 2, a cylinder is inscribed in a sphere of radius 2 cm.
Find the maximum volume of the cylinder.

- 8. Consider the curve $C: y = 10e^{-x}$, where x > 0. It is given that *P* is a point lying on *C*. The horizontal line which passes through *P* cuts the *y*-axis at the point *D*, and the curve *C* cuts the *y*-axis at the point *E*. Denote the *y*-coordinate of *P* by *v*.
 - (a) Find the area of $\triangle PDE$ in terms of v.
 - (b) If *P* moves along *C* such that *PD* increases at a rate of $\frac{1}{5}$ units per second, find the rate of change of the area of $\triangle PDE$ when $PD = \ln 2$ units. (6 marks)

(8 marks)

S5 Mathematics Extended Part Module 2

Section B (50 marks)

- 9. Let f(x) be a continuous function defined on R. Denote the curve y = f(x) by Γ . It is given that the y-intercept of Γ is 1 and f'(x) = 2x 5 for all $x \in \mathbf{R}$.
 - (a) Find the equation of Γ .
 - (b) Let *L* be a tangent to Γ such that *L* passes through the point (3, -9) and the slope of *L* is positive. Denote the point of contact of Γ and *L* by *P*.
 - (i) Find the coordinates of *P*.
 - (ii) Find the equation of straight line which is perpendicular to *L* and passes through *P*.

_____ _____ _____ _____ _____

10.	Let	$f(x) = \frac{(x+2)^3}{(x-2)^2}$ for all real numbers $x \neq 2$. Denote the graph of $y = f(x)$ by Γ .
	(a)	Find the asymptote(s) of Γ .
	(b)	Find $f''(x)$.
	(c)	Find the maximum/minimum point(s) of Γ .
	(d)	Someone claims that there are two points of inflexion of Γ . Do you agree? Explain your answer.
	(e)	Find the area of the region bounded by Γ , the x-axis and the y-axis.
		(14 marks)

11. (a) In Figure 3, the curve Γ consists of the curve AB, the line segments BC and CO, where O is the origin, B lies in the first quadrant and C lies on the x-axis. The equations of AB and BC are $x^2 - 3y + 5 = 0$ and x + y - 5 = 0 respectively.

- (i) Find the coordinates of *B*.
- (ii) Let *h* be the *y*-coordinate of *A*, where h > 3. A cup is formed by revolving Γ about the *y*-axis. Prove that the capacity of the cup is $\frac{\pi}{2}(3h^2 10h + 81)$.
- (b) A cup described in (a)(ii) is placed on a horizontal table. The radii of the base and the rim of the cup are 5 cm and 7 cm respectively.
 - (i) Find the capacity of the cup.
 - (ii) Water is poured into the cup at a constant rate of 20π cm³/s. Find the rate of change of the depth of water when the volume of water in the cup is 53π cm³.

(14 marks)

12. (a) Let
$$0 \le x \le \frac{\pi}{4}$$
. Prove that $\frac{1}{12\cos 2x + 13} = \frac{\sec^2 x}{24 + \sec^2 x}$

- (b) Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{1}{12\cos 2x + 13} dx$.
- (c) Let s(x) be a continuous function defined on R such that the graph of y = s(x) is symmetrical about the origin. Prove that $\int_{-t}^{t} s(x) \ln(1+e^x) dx = \int_{0}^{t} xs(x) dx$ for any $t \in \mathbf{R}$.

(d) Evaluate
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{12\sin 2x}{(12\cos 2x + 13)^2} \ln(1 + e^x) dx$$
.

(14 marks)

 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 · <u>-</u>
 -

— End of Paper —