FUKIEN SECONDARY SCHOOL S4 First Term Uniform Test (2020-2021) Mathematics Extended Part Module 1 (1 hour 15 minutes)

Date: 23rd October 2020 Time: 8:30 a.m. - 9:45 a.m.

Name:	
Class:	No.:

Instructions to students:

- 1. The maximum score of this paper is 53.
- 2. Attempt ALL questions. Write your answers on the single-lined paper.
- 3. Unless otherwise specified, show your workings clearly.
- 4. Unless otherwise specified, numerical answers should be either exact or given to 4 decimal places.
- 5. The diagrams in this paper are not necessarily drawn to scale.

S4 Mathematics Extended Part Module 1

1 Let
$$\sum_{i=1}^{5} x_i = 5$$
, $\sum_{i=1}^{5} y_i = 12$, $\sum_{i=1}^{5} x_i^2 = 17$, $\sum_{i=1}^{5} y_i^2 = 30$ and $\sum_{i=1}^{5} x_i y_i = 24$. Calculate the following.
(a) $\sum_{i=1}^{5} (3x_i - 1)$ (b) $\sum_{i=1}^{5} (2x_i + 3y_i)$ (c) $\sum_{i=1}^{5} (5x_i + 4y_i)^2$
(3 marks)

- 2. Find the amount accumulated at the end of 5 years for \$10000 at 6 % if interest is compounded
 - (a) annually,
 - (b) monthly,
 - (c) continuously.

(correct your answers to the nearest dollar.)

(3 marks)

3. (a) Simplify
$$\frac{(n+1)!}{2!(n-1)!}$$
.
(b) Hence, solve $4C_2^{n+1} + C_{n-1}^n = 152$.
(5 marks)

- 4. (a) Expand $(2+x)^3$ in ascending powers of x
 - (b) Expand $e^{x}(2+x)^{3}$ in descending powers of x up to the term x^{3} .

(4 marks)

5. It is given that $(1+kx)^7 = 1+bx+84x^2 + \text{ terms involving higher powers of } x$, where k < 0 and $b \neq 0$. Find the values of k and b.

(4 marks)

6. Given that in the expansion of $\left(x^2 + \frac{3}{x}\right)^n$ in descending powers of *x*, where *n* is a positive integer, the 7th term is the constant term. Find *n* and the constant term.

(4 marks)

- 7. Let $y = ae^{bx}$, where *a* and *b* are constants.
 - (a) By expressing $\ln y$ as a linear function of x.
 - (b) It is given that the intercepts of the horizontal axis and the vertical axis of the graph of the linear function obtained in (a) are 0.77 and −2.3 respectively. Find the values of *a* and *b* correct to 1 decimal place.

(4 marks)

- 8. Solve each of the following equations.
 - (a) $\ln(5x+1) \ln(5x-4) = \ln 2$. (b) $e^x + 4e^{-x} = 5$.

(5 marks)

- 9. (a) Expand e^{-6x} in ascending powers of x as far as the term in x^2 .
 - (b) If the coefficient of x^2 in the expansion of $\frac{(3+kx)^6}{e^{6x}}$ is 486, where k is an integer, find the value of k.

(5 marks)

- 10. After adding a chemical into a solution, the temperature $T(t) \circ C$ of the solution can be modelled by $T(t) = (t+1)^2 e^{-\lambda t} + k$, where $t \geq 0$ is the time measured in seconds after the chemical has been added and λ , k are constants. It is given that T(9) = T(19).
 - (a) Find λ in terms of natural logarithms.
 - (b) Furthermore, it is given that T(5) = 50.
 - (i) Find the value of *k*.
 - (ii) Find the temperature of the solution 10 seconds after the chemical has been added.

(7 marks)

- 11. (a) Expand $(1 + ax)^2(1 + bx)^7$ in ascending powers of x as far as the term in x^2 .
 - (b) If the coefficients of x and x^2 in the expansion in (a) are $\frac{-5}{2}$ and $\frac{-27}{4}$ respectively,
 - (i) find the values of *a* and *b*,
 - (ii) find the coefficient of x in the expansion of $(1 + ax)^3(1 + bx)^7$ where b > 0.

(9 marks)

END OF PAPER