FUKIEN SECONDARY SCHOOL

S3 First Term Uniform Test (2020-2021)

Mathematics

(1 hour)

Date: 20th October 2020 Time: 9:45 a.m. - 10:45 a.m.

Name:_____ Class: _____ No.: _____

Instructions to students:

- 1. This paper consists of THREE parts, Section A, Section B and Bonus Question. Section A carries 42 marks, Section B carries 16 marks and Bonus Question carries 4 marks.
- 2. The maximum score of this paper is 58.
- Attempt ALL questions in Section A and Section B.
 Write your answers in the spaces provided in this Question / Answer Book.
- 4. Unless otherwise specified, show your workings clearly.
- 5. Unless otherwise specified, numerical answers should either be exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Section A (42 marks)
1. Factorize
(a)
$$8x^4y^3 + 18x^2y$$
,
(b) $5x^2 - 14x - 3$,
(c) $a(r-s)b - 3(s-r)c$.
(6 marks)

2. Simplify $\left(\frac{a^4b^{-2}}{a^{-3}b^0}\right)^{-1}$ and express your answer with positive indices.
(3 marks)

3. Solve the simultaneous equations $\begin{cases} 2x - y + 5 = 0 \\ x - 3y + 15 = 0 \end{cases}$.
(4 marks)

4. Solve the following linear inequalities in one unknown.

(a)
$$\frac{3x+8}{2} \ge 2x-3$$

(b) $\frac{3x+2}{4} \le \frac{2x-3}{7}$

(4 marks)

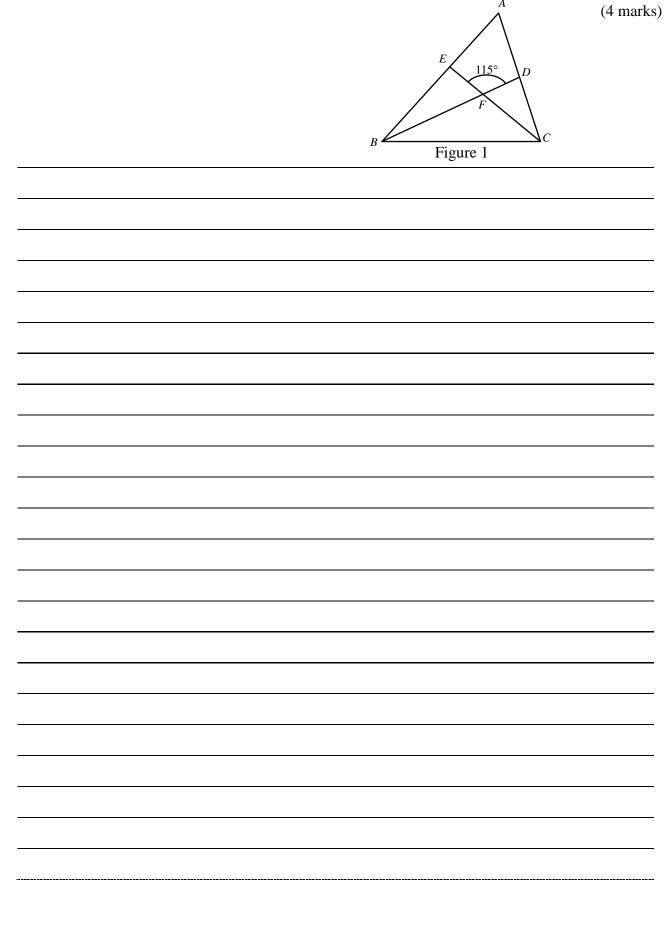
- 5. Express the following as binary numbers.
 - (a) $1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$
 - (b) $1 \times 128 + 2 \times 32 + 1 \times 2 + 2$

(4 marks)

- 6. (a) Convert 300_{16} into denary number.
 - (b) Convert 158 into hexadecimal number.

(4 marks)

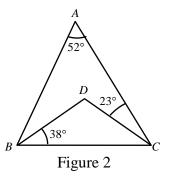
7. Consider the inequality


- $\frac{5x+1}{3} \frac{x+1}{5} < 6 \quad \dots \quad (*) \; .$
- (a) Solve (*) and represent the solutions graphically on the number line.

(b) Write down the greatest integer satisfying (*).

(5 marks)

8. In Figure 1, *AEB* and *ADC* are straight lines. *BD* and *CE* are angle bisectors of $\angle ABC$ and $\angle ACB$ respectively and they meet at *F*. $\angle DFE = 115^{\circ}$. Find $\angle BAC$.


9. Evaluate each of the following expressions and express the answer in scientific notation.

(a)
$$\frac{(7 \times 10^{-5}) \times (2.4 \times 10^{12})}{3 \times 10^{3}}$$

(b)
$$\frac{3.35 \times 10^{3} + 7.28 \times 10^{4}}{0.05 \times 10^{-5}}$$

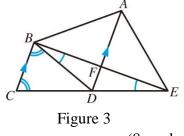
(4 marks)

10. In Figure 2, given that $\angle BAC = 52^\circ$, $\angle ACD = 23^\circ$, $\angle DBC = 38^\circ$ and *D* is the circumcentre of $\triangle ABC$. Find $\angle ABD$.

(4 marks)

Section B (16 marks)

11. Simplify the following expressions.



(a)
$$\frac{2^{x+3}}{15^{-x-1}} \cdot \frac{6^{-x+2}}{5^{x+1}}$$

(b) $\frac{3(2 - - 4^n)^{2}}{2^n - 2^{n-1}}$

(8 marks)

12. In Figure 3, *AFD*, *BFE* and *CDE* are straight lines. *DA* // *CB*, $\angle DBE = \angle DEB$ and $\angle DBC = \angle DCB$.

- (a) Prove that *BD* is a median of $\triangle BCE$.
- (b) (i) Prove that $BC \perp BE$.
 - (ii) Hence, prove that AD is an altitude of $\triangle ABE$.

(8 marks)

Bonus Question (4 marks)

14. If $x + x^{-1} = \sqrt{31}$, find the value of $x^4 + x^{-4}$.

(4 marks)